Taner Sar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315656/publications.pdf

Version: 2024-02-01

623734 526287 34 826 14 27 citations h-index g-index papers 36 36 36 614 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Screening for Bioactive Compound Rich Pomegranate Peel Extracts and Their Antimicrobial Activities. Johnson Matthey Technology Review, 2022, 66, 81-89.	1.0	9
2	Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. Bioresource Technology, 2022, 344, 126193.	9.6	34
3	Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Science of the Total Environment, 2022, 810, 152253.	8.0	50
4	Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered, 2022, 13, 6521-6557.	3.2	107
5	Potential use of olive oil mill wastewater for bacterial cellulose production. Bioengineered, 2022, 13, 7659-7669.	3.2	16
6	Demo-scale production of protein-rich fungal biomass from potato protein liquor for use as innovative food and feed products. Food Bioscience, 2022, 47, 101637.	4.4	17
7	Production of filamentous fungal biomass with increased oil content using olive oil as a carbon source. Journal of Chemical Technology and Biotechnology, 2022, 97, 2626-2635.	3.2	2
8	Myco-biorefinery approaches for food waste valorization: Present status and future prospects. Bioresource Technology, 2022, 360, 127592.	9.6	14
9	Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. Bioresource Technology, 2022, 360, 127620.	9.6	13
10	Combining coâ€culturing of Paenibacillus strains and Vitreoscilla hemoglobin expression as a strategy to improve biodesulfurization. Letters in Applied Microbiology, 2021, 72, 484-494.	2.2	4
11	Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresource Technology, 2021, 321, 124496.	9.6	76
12	Conversion of fish processing wastewater into fish feed ingredients through submerged cultivation of Aspergillus oryzae. Systems Microbiology and Biomanufacturing, 2021, 1, 100-110.	2.9	18
13	Potential antifungal effects of silver nanoparticles (AgNPs) of different sizes against phytopathogenic Fusarium oxysporum f. sp. radicis-lycopersici (FORL) strains. SN Applied Sciences, 2021, 3, 1.	2.9	45
14	Antibiofilm effects of pomegranate peel extracts against <i>B.Âcereus</i> , <i>B.Âsubtilis</i> , and <i>E.Âfaecalis</i> . International Journal of Food Science and Technology, 2021, 56, 4915-4924.	2.7	15
15	Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresource Technology, 2021, 337, 125451.	9.6	180
16	Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed. Sustainability, 2021, 13, 12489.	3.2	6
17	New Insights on Protein Recovery from Olive Oil Mill Wastewater through Bioconversion with Edible Filamentous Fungi. Processes, 2020, 8, 1210.	2.8	24
18	Bioprocessing strategies to increase the protein fraction of Rhizopus oryzae biomass using fish industry sidestreams. Waste Management, 2020, 113, 261-269.	7.4	27

#	Article	IF	CITATIONS
19	Bioethanol production from whey powder by immobilizedE. coliexpressingVitreoscillahemoglobin: optimization of sugar concentration and inoculum size. Biofuels, 2019, , 1-6.	2.4	10
20	Investigation of Effective Immobilization Method for Ethanol Producing E. coli Strain. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 217-220.	0.5	2
21	Biofilm formation by <i>Staphylococcus aureus</i> phytochemicals. International Journal of Dairy Technology, 2018, 71, 637-646.	2.8	19
22	In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. Journal of Colloid and Interface Science, 2018, 530, 137-145.	9.4	33
23	Repeated batch fermentation of immobilized <i>E. coli</i> expressing <i>Vitreoscilla</i> hemoglobin for long-term use. Bioengineered, 2017, 8, 651-660.	3.2	12
24	The use of bacterial cellulose nanocomposites as an electrode material in Lithium ion batteries. Journal of Biotechnology, 2017, 256, S41.	3.8	0
25	Effective ethanol production from whey powder through immobilizedE. coliexpressingVitreoscillahemoglobin. Bioengineered, 2017, 8, 171-181.	3.2	26
26	Effects on Plant Development by Urbanization and Industrialization. Journal of the Institute of Science and Technology, 2017, 7, 291-299.	0.9	0
27	Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries. Cellulose, 2016, 23, 2597-2607.	4.9	19
28	Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by " <i>Vitreoscilla</i> hemoglobin expressing― <i>Escherichia coli</i> Bioscience, Biotechnology and Biochemistry, 2014, 78, 687-694.	1.3	24
29	Effect of different components of media prepared with sugar beet hydrolysate on cell growth and ethanol production. New Biotechnology, 2014, 31, S99-S100.	4.4	0
30	Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey*. CoÄŸrafya Dergisi, 0, , 29-39.	0.4	7
31	CONTROL OF B. CEREUS BIOFILMS BY CITRIC ACID TREATMENTS. Gıda, 0, , 604-615.	0.4	1
32	Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde ÖlÁ§ek BþyÁ¼tmenin Etkisi. Akademik Gıda, O, , 264-269.	0.8	0
33	Organosolv pretreatment of oat husk using oxalic acid as an alternative organic acid and its potential applications in biorefinery. Biomass Conversion and Biorefinery, 0 , 1 .	4.6	13
34	Improvement in desulfurization of dibenzothiophene and dibenzothiophene sulfone by <i>Paenibacillus</i> strains using immobilization or nanoparticle coating. Journal of Applied Microbiology, 0, , .	3.1	2