Fahmuddin Agus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315478/publications.pdf

Version: 2024-02-01

414414 430874 1,067 38 18 32 citations h-index g-index papers 42 42 42 1347 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of urbanization trends on production of key staple crops. Ambio, 2022, 51, 1158-1167.	5.5	18
2	No evidence for tradeâ€offs between bird diversity, yield and water table depth on oil palm smallholdings: Implications for tropical peatland landscape restoration. Journal of Applied Ecology, 2022, 59, 1231-1247.	4.0	0
3	Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nature Food, 2022, 3, 217-226.	14.0	45
4	Reclamation of post-tin mining areas using forages: A strategy based on soil mineralogy, chemical properties and particle size of the refused materials. Catena, 2022, 213, 106140.	5.0	5
5	Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 2022, 3, 426-443.	29.7	28
6	Fostering a climate-smart intensification for oil palm. Nature Sustainability, 2021, 4, 595-601.	23.7	34
7	Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 2021, 14, 484-490.	12.9	35
8	Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra, Indonesia. Regional Environmental Change, 2021, 21, 1.	2.9	24
9	Wading through the swamp: what does tropical peatland restoration mean to nationalâ€level stakeholders in Indonesia?. Restoration Ecology, 2020, 28, 817-827.	2.9	16
10	Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology, 2020, 26, 2477-2495.	9.5	34
11	Improving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series. Methods in Ecology and Evolution, 2020, 11, 532-541.	5.2	27
12	Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Research, 2019, 237, 12-22.	5.1	29
13	A comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra, Indonesia. Remote Sensing in Ecology and Conservation, 2019, 5, 247-258.	4.3	18
14	Simulating rice and maize yield potential in the humid tropical environment of Indonesia. European Journal of Agronomy, 2018, 101, 10-19.	4.1	21
15	MAGGnet: An international network to foster mitigation of agricultural greenhouse gases. Carbon Management, 2016, 7, 243-248.	2.4	7
16	ALTERNATIVE TREE CROPS FOR RECONSTRUCTION OF THE GREEN INFRASTRUCTURE POST-TSUNAMI IN THE COASTAL AREAS OF ACEH BARAT DISTRICT. Indonesian Journal of Agricultural Science, 2016, 10, 1.	0.3	1
17	Characteristics of Tropical Drained Peatlands and CO2 Emission under Several Land Use Types. Jurnal Tanah Tropika, 2016, 20, 47-57.	0.2	O
18	Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 677.	2.1	20

#	Article	IF	CITATIONS
19	Peat emission control by groundwater management and soil amendments: evidence from laboratory experiments. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 821-829.	2.1	15
20	Root- and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 831-843.	2.1	64
21	Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures?. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 809-819.	2.1	33
22	CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 845-862.	2.1	65
23	Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 887-905.	2.1	47
24	Pilot application of PalmGHG, the Roundtable on Sustainable Palm Oil greenhouse gas calculator for oil palm products. Journal of Cleaner Production, 2014, 73, 136-145.	9.3	47
25	Semiarid Soils of Eastern Indonesia: Soil Classification and Land Uses. , 2013, , 449-466.		3
26	Relationship between Distance Sampling and Carbon Dioxide Emission under Oil Palm Plantation. Jurnal Tanah Tropika, 2013, 18, 125.	0.2	5
27	Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan. Jurnal Tanah Tropika, 2013, 18, 11-16.	0.2	0
28	Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan. Jurnal Tanah Tropika, 2013, 18, 11.	0.2	0
29	Microbial Activities as Affected by Peat Dryness and Ameliorant. American Journal of Environmental Sciences, 2011, 7, 348-353.	0.5	2
30	Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. Catena, 2010, 80, 34-46.	5.0	73
31	LAND USE CHANGE AND RECOMMENDATION FOR SUSTAINABLE DEVELOPMENT OF PEATLAND FOR AGRICULTURE: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan. Indonesian Journal of Agricultural Science, 2010, 11, 32.	0.3	2
32	LAND USE CHANGE AND RECOMMENDATION FOR SUSTAINABLE DEVELOPMENT OF PEATLAND FOR AGRICULTURE: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan. Indonesian Journal of Agricultural Science, 2010, 11, 32.	0.3	11
33	Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agriculture, Ecosystems and Environment, 2008, 128, 225-238.	5.3	269
34	Environmental multifunctionality of Indonesian agriculture. Paddy and Water Environment, 2006, 4, 181-188.	1.8	17
35	Grain crop response to contour hedgerow systems on sloping Oxisols. Agroforestry Systems, 1998, 42, 107-120.	2.0	18
36	Bromide Transport under Contour Hedgerow Systems in Sloping Oxisols. Soil Science Society of America Journal, 1998, 62, 1042-1048.	2.2	5

#	Article	IF	CITATIONS
37	Fieldâ€Scale Bromide Transport as Affected by Tillage. Soil Science Society of America Journal, 1992, 56, 254-260.	2.2	10
38	An indigenous agricultural model from West Sumatra: A source of scientific insight. Agricultural Systems, 1988, 26, 191-209.	6.1	19