
Andreas Terfort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron Transport through Thin Organic Films in Metalâ~'Insulatorâ~'Metal Junctions Based on Self-Assembled Monolayers. Journal of the American Chemical Society, 2001, 123, 5075-5085.	6.6	597
2	Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Materials, 2009, 8, 481-484.	13.3	500
3	XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surface Science, 2009, 603, 2849-2860.	0.8	357
4	Preparation, Modification, and Crystallinity of Aliphatic and Aromatic Carboxylic Acid Terminated Self-Assembled Monolayers. Langmuir, 2002, 18, 3980-3992.	1.6	226
5	Rapid Roomâ€Temperature Synthesis of Metal–Organic Framework HKUSTâ€1 Crystals in Bulk and as Oriented and Patterned Thin Films. Advanced Functional Materials, 2011, 21, 1442-1447.	7.8	225
6	Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coordination Chemistry Reviews, 2016, 307, 391-424.	9.5	193
7	Patterned Deposition of Metalâ€Organic Frameworks onto Plastic, Paper, and Textile Substrates by Inkjet Printing of a Precursor Solution. Advanced Materials, 2013, 25, 4631-4635.	11.1	168
8	Liquidâ€Phase Epitaxy of Multicomponent Layerâ€Based Porous Coordination Polymer Thin Films of [M(L)(P)0.5] Type: Importance of Deposition Sequence on the Oriented Growth. Chemistry - A European Journal, 2011, 17, 1448-1455.	1.7	155
9	A Comprehensive Study of Self-Assembled Monolayers of Anthracenethiol on Gold:Â Solvent Effects, Structure, and Stability. Journal of the American Chemical Society, 2006, 128, 1723-1732.	6.6	150
10	Fabrication of a Carboxyl-Terminated Organic Surface with Self-Assembly of Functionalized Terphenylthiols:Â The Importance of Hydrogen Bond Formation. Journal of the American Chemical Society, 1998, 120, 12069-12074.	6.6	147
11	A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. ACS Nano, 2013, 7, 6489-6497.	7.3	141
12	Structural Characterization of Organothiolate Adlayers on Gold:Â The Case of Rigid, Aromatic Backbones. Langmuir, 2001, 17, 3689-3695.	1.6	116
13	Direct Probing Molecular Twist and Tilt in Aromatic Self-Assembled Monolayers. Journal of the American Chemical Society, 2007, 129, 15416-15417.	6.6	96
14	Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surface Science, 2005, 595, 56-63.	0.8	95
15	Insight into the Oriented Growth of Surface-Attached Metal–Organic Frameworks: Surface Functionality, Deposition Temperature, and First Layer Order. Journal of the American Chemical Society, 2015, 137, 8237-8243.	6.6	95
16	The Effects of Embedded Dipoles in Aromatic Selfâ€Assembled Monolayers. Advanced Functional Materials, 2015, 25, 3943-3957.	7.8	90
17	Determination of Molecular Orientation in Self-Assembled Monolayers Using IR Absorption Intensities: The Importance of Grinding Effects. Langmuir, 2001, 17, 4980-4989.	1.6	84
18	Selenium as a Key Element for Highly Ordered Aromatic Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2008, 47, 5250-5252.	7.2	78

#	Article	IF	CITATIONS
19	Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold. Physical Chemistry Chemical Physics, 2010, 12, 4459.	1.3	76
20	Switching of Bacterial Adhesion to a Glycosylated Surface by Reversible Reorientation of the Carbohydrate Ligand. Angewandte Chemie - International Edition, 2014, 53, 14583-14586.	7.2	74
21	Thiolate <i>versus</i> Selenolate: Structure, Stability, and Charge Transfer Properties. ACS Nano, 2015, 9, 4508-4526.	7.3	69
22	Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials, 2012, 5, 1581-1592.	1.3	67
23	Influence of an Atom in EGaIn/Ga ₂ O ₃ Tunneling Junctions Comprising Self-Assembled Monolayers. Journal of Physical Chemistry C, 2013, 117, 11367-11376.	1.5	67
24	Making Protein Patterns by Writing in a Proteinâ€Repelling Matrix. Angewandte Chemie - International Edition, 2009, 48, 5833-5836.	7.2	66
25	Embedded Dipole Selfâ€Assembled Monolayers for Contact Resistance Tuning in pâ€Type and nâ€Type Organic Thin Film Transistors and Flexible Electronic Circuits. Advanced Functional Materials, 2018, 28, 1804462.	7.8	66
26	Self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols: specific characteristics and odd–even effects. Physical Chemistry Chemical Physics, 2010, 12, 12123.	1.3	63
27	Tuning the Exchange Reaction between a Self-assembled Monolayer and Potential Substituents by Electron Irradiation. Journal of Physical Chemistry C, 2007, 111, 7772-7782.	1.5	59
28	Oddâ^'Even Effect in Molecular Packing of Biphenyl-Substituted Alkaneselenolate Self-Assembled Monolayers on Au(111): Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2008, 112, 15466-15473.	1.5	59
29	Balance of Structureâ^'Building Forces in Selenium-Based Self-Assembled Monolayers. Journal of the American Chemical Society, 2007, 129, 2232-2233.	6.6	55
30	Relative stability of thiol and selenol based SAMs on Au(111) — exchange experiments. Physical Chemistry Chemical Physics, 2010, 12, 4400.	1.3	52
31	A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 2118.	1.5	47
32	Effect of the Bending Potential on Molecular Arrangement in Alkaneselenolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 12495-12506.	1.5	47
33	Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers. Chemical Science, 2016, 7, 781-787.	3.7	46
34	Liquid-Phase Epitaxial Growth of Highly Oriented and Multivariate Surface-Attached Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 18984-18993.	6.6	44
35	The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces. Beilstein Journal of Nanotechnology, 2012, 3, 570-578.	1.5	41
36	Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111}. Journal of the American Chemical Society, 2014, 136, 8110-8121.	6.6	41

#	Article	IF	CITATIONS
37	Zr-Metal–Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS Applied Materials & Interfaces, 2019, 11, 3034-3043.	4.0	40
38	Self-Assembled Monolayers of Aromatic Tellurides on (111)-Oriented Gold and Silver Substrates. Journal of Physical Chemistry C, 2007, 111, 11627-11635.	1.5	38
39	Understanding the Properties of Tailor-Made Self-Assembled Monolayers with Embedded Dipole Moments for Interface Engineering. Journal of Physical Chemistry C, 2018, 122, 28757-28774.	1.5	38
40	Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials. Colloids and Surfaces B: Biointerfaces, 2013, 111, 360-366.	2.5	37
41	Heterochiral to Homochiral Transition in Pentahelicene 2D Crystallization Induced by Second-Layer Nucleation. ACS Nano, 2017, 11, 865-871.	7.3	37
42	Electrochemical removal of biofilms from titanium dental implant surfaces. Bioelectrochemistry, 2018, 121, 84-94.	2.4	37
43	Synthesis of a New Copper-Azobenzene Dicarboxylate Framework in the Form of Hierarchical Bulk Solids and Thin Films without and with Patterning. Chemistry of Materials, 2011, 23, 5366-5374.	3.2	35
44	Micrometerâ€Scale Proteinâ€Resistance Gradients by Electronâ€Beam Lithography. Angewandte Chemie - International Edition, 2008, 47, 7238-7241.	7.2	33
45	Polymorphism in Self-Assembled Terphenylthiolate Monolayers on Au(111). Langmuir, 2013, 29, 13449-13456.	1.6	33
46	Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 132-141.	2.0	33
47	Relative Thermal Stability of Thiolate- and Selenolate-Bonded Aromatic Monolayers on the Au(111) Substrate. Journal of Physical Chemistry C, 2017, 121, 28031-28042.	1.5	33
48	A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini. Organic and Biomolecular Chemistry, 2010, 8, 3552.	1.5	32
49	Controlled Modification of Protein-Repelling Self-Assembled Monolayers by Ultraviolet Light: The Effect of the Wavelength. Journal of Physical Chemistry C, 2012, 116, 9019-9028.	1.5	31
50	Dipole-induced asymmetric conduction in tunneling junctions comprising self-assembled monolayers. RSC Advances, 2016, 6, 69479-69483.	1.7	31
51	Biphenylnitrile-Based Self-Assembled Monolayers on Au(111): Spectroscopic Characterization and Resonant Excitation of the Nitrile Tail Group. Journal of Physical Chemistry C, 2010, 114, 12719-12727.	1.5	30
52	Compensation of the Oddâ^'Even Effects in Araliphatic Self-Assembled Monolayers by Nonsymmetric Attachment of the Aromatic Part. Journal of Physical Chemistry C, 2011, 115, 2841-2854.	1.5	28
53	Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers. Journal of Physical Chemistry Letters, 2016, 7, 2994-3000.	2.1	28
54	Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers. Physical Chemistry Chemical Physics, 2011, 13, 15530.	1.3	27

#	Article	IF	CITATIONS
55	Static Conductance of Nitrile-Substituted Oligophenylene and Oligo(phenylene ethynylene) Self-Assembled Monolayers Studied by the Mercury-Drop Method. Journal of Physical Chemistry C, 2013, 117, 25556-25561.	1.5	27
56	Odd–Even Effects in the Structure and Stability of Azobenzene-Substituted Alkanethiolates on Au(111) and Ag(111) Substrates. Journal of Physical Chemistry C, 2015, 119, 25929-25944.	1.5	27
57	Dynamic Double Lattice of 1-Adamantaneselenolate Self-Assembled Monolayers on Au{111}. Journal of the American Chemical Society, 2011, 133, 19422-19431.	6.6	25
58	Bacteria-Repulsive Polyglycerol Surfaces by Grafting Polymerization onto Aminopropylated Surfaces. Langmuir, 2012, 28, 15916-15921.	1.6	25
59	Application of Long Wavelength Ultraviolet Radiation for Modification and Patterning of Protein-Repelling Monolayers. Journal of Physical Chemistry C, 2013, 117, 5824-5830.	1.5	25
60	Reusable plasmonic substrates fabricated by interference lithography: a platform for systematic sensing studies. Journal of Raman Spectroscopy, 2013, 44, 170-175.	1.2	25
61	The fate of bromine after temperature-induced dehydrogenation of on-surface synthesized bisheptahelicene. Chemical Science, 2019, 10, 2998-3004.	3.7	25
62	Diastereoselective Ullmann Coupling to Bishelicenes by Surface Topochemistry. Journal of the American Chemical Society, 2018, 140, 15186-15189.	6.6	24
63	Bottom-Up Synthesis of Graphene Monolayers with Tunable Crystallinity and Porosity. ACS Nano, 2019, 13, 7310-7322.	7.3	24
64	Self-Assembled Monolayers with Embedded Dipole Moments for Work Function Engineering of Oxide Substrates. Journal of Physical Chemistry C, 2020, 124, 8775-8785.	1.5	22
65	Electronic Structure of Aromatic Monomolecular Films: The Effect of Molecular Spacers and Interfacial Dipoles. Journal of Physical Chemistry C, 2011, 115, 22422-22428.	1.5	21
66	Electrochemical and surface analytical studies of self-assembled monolayers of three aromatic thiols on gold electrodes. Journal of Solid State Electrochemistry, 2001, 5, 396-401.	1.2	20
67	IR spectroscopic characterization of SAMs made from a homologous series of pyridine disulfides. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 120-127.	0.8	19
68	Odd–Even Effect in the Polymorphism of Self-Assembled Monolayers of Biphenyl-Substituted Alkaneselenolates on Au(111). Journal of Physical Chemistry C, 2012, 116, 19535-19542.	1.5	19
69	Triptycene-terminated thiolate and selenolate monolayers on Au(111). Beilstein Journal of Nanotechnology, 2017, 8, 892-905.	1.5	18
70	Heterochiral recognition among functionalized heptahelicenes on noble metal surfaces. Chemical Communications, 2019, 55, 10595-10598.	2.2	18
71	Interfacial Band Engineering of MoS ₂ /Gold Interfaces Using Pyrimidineâ€Containing Selfâ€Assembled Monolayers: Toward Contactâ€Resistanceâ€Free Bottomâ€Contacts. Advanced Electronic Materials, 2020, 6, 2000110.	2.6	18
72	Oscillations in the Stability of Consecutive Chemical Bonds Revealed by Ionâ€Induced Desorption. Angewandte Chemie - International Edition, 2015, 54, 1336-1340.	7.2	17

#	Article	IF	CITATIONS
73	Charge Transport Properties of Single-Component and Binary Aromatic Self-Assembled Monolayers with Methyl and Trifluoromethyl Tail Groups. Journal of Physical Chemistry C, 2020, 124, 24837-24848.	1.5	17
74	Nitro-Substituted Aromatic Thiolate Self-Assembled Monolayers: Structural Properties and Electron Transfer upon Resonant Excitation of the Tail Group. Journal of Physical Chemistry C, 2014, 118, 26049-26060.	1.5	16
75	Self-Perforated Hydrogel Nanomembranes Facilitate Structural Analysis of Proteins by Electron Cryo-Microscopy. ACS Nano, 2017, 11, 6467-6473.	7.3	16
76	Effect of Electron Irradiation on Electric Transport Properties of Aromatic Self-Assembled Monolayers. Journal of Physical Chemistry C, 2017, 121, 7355-7364.	1.5	16
77	Mixed Monomolecular Films with Embedded Dipolar Groups on Ag(111). Journal of Physical Chemistry C, 2018, 122, 19514-19523.	1.5	16
78	Concentrationâ€Dependent Seeding as a Strategy for Fabrication of Densely Packed Surfaceâ€Mounted Metal–Organic Frameworks (SURMOF) Layers. Chemistry - A European Journal, 2020, 26, 5185-5189.	1.7	16
79	Self-Assembled Monolayers with Distributed Dipole Moments Originating from Bipyrimidine Units. Journal of Physical Chemistry C, 2020, 124, 504-519.	1.5	15
80	Electronâ€Irradiation Promoted Exchange Reaction as a Tool for Surface Engineering and Chemical Lithography. Advanced Materials Interfaces, 2021, 8, 2100148.	1.9	15
81	Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Accounts of Chemical Research, 2022, 55, 1857-1867.	7.6	15
82	Heterogeneous electron transfer processes in triarylamine- and ferrocene-based self-assembled monolayers. Journal of Electroanalytical Chemistry, 2006, 590, 32-36.	1.9	14
83	Adjustment of the Work Function of Pyridine and Pyrimidine Substituted Aromatic Self-Assembled Monolayers by Electron Irradiation. Journal of Physical Chemistry C, 2017, 121, 12834-12841.	1.5	14
84	Smart Molecular Nanosheets for Advanced Preparation of Biological Samples in Electron Cryo-Microscopy. ACS Nano, 2020, 14, 9972-9978.	7.3	14
85	Grafting Organic n‣emiconductors to Surfaces: (Perfluoroâ€ <i>p</i> â€ŧerphenylâ€4â€yl)alkanethiols. European Journal of Organic Chemistry, 2010, 2010, 3041-3048.	1.2	13
86	Modification of Self-Assembled Monolayers of Perfluoroterphenyl-Substituted Alkanethiols by Low-Energy Electrons. Journal of Physical Chemistry C, 2011, 115, 4773-4782.	1.5	13
87	A â€~dual click' strategy for the fabrication of bioselective, glycosylated self-assembled monolayers as glycocalyx models. Organic and Biomolecular Chemistry, 2013, 11, 4006.	1.5	13
88	UV-mediated tuning of surface biorepulsivity in aqueous environment. Chemical Communications, 2014, 50, 4325-4327.	2.2	13
89	Maskless Ultraviolet Projection Lithography with a Biorepelling Monomolecular Resist. Journal of Physical Chemistry C, 2015, 119, 494-501.	1.5	13
90	Relative Stability of Thiolate and Selenolate SAMs on Ag(111) Substrate Studied by Static SIMS. Oscillation in Stability of Consecutive Chemical Bonds. Journal of Physical Chemistry C, 2017, 121, 459-470.	1.5	13

#	Article	IF	CITATIONS
91	Diastereoselective self-assembly of bisheptahelicene on Cu(111). Chemical Communications, 2018, 54, 8757-8760.	2.2	13
92	Minimization of Surface Energies and Ripening Outcompete Template Effects in the Surface Growth of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 8348-8352.	7.2	12
93	Self-Assembled Monolayers of Perfluoroanthracenylaminoalkane Thiolates on Gold as Potential Electron Injection Layers. ACS Applied Materials & Interfaces, 2016, 8, 7308-7319.	4.0	12
94	Self-Assembled Monolayers of Pseudo- <i>C</i> _{2<i>v</i>} -Symmetric, Low-Band-Gap Areneoxazolethiolates on Gold Surfaces. Langmuir, 2016, 32, 11474-11484.	1.6	12
95	Pyridine as a Resonantly Addressable Group to Study Electron-Transfer Dynamics in Self-Assembled Monolayers. Journal of Physical Chemistry C, 2018, 122, 12534-12544.	1.5	12
96	Photoisomerization of azobenzene-substituted alkanethiolates on Au(111) substrates in the context of work function variation: the effect of structure and packing density. Physical Chemistry Chemical Physics, 2019, 21, 9098-9105.	1.3	12
97	Catalytic CSe Bond Formation under Very Mild Conditions for the Two‣tep, Oneâ€Pot Synthesis of Aryl Selenoacetates. Advanced Synthesis and Catalysis, 2012, 354, 2653-2658.	2.1	11
98	Promoting Effect of Protecting Group on the Structure and Morphology of Self-Assembled Monolayers: Terphenylylethanethioactate on Au(111). Journal of Physical Chemistry C, 2015, 119, 25352-25363.	1.5	11
99	Stereospecific Autocatalytic Surface Explosion Chemistry of Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 7705-7709.	6.6	11
100	Preparation of Azobenzenealkanethiols for Self-Assembled Monolayers with Photoswitchable Properties. Australian Journal of Chemistry, 2010, 63, 303.	0.5	10
101	Structural characterization of a series of aryl selenoacetates. Journal of Molecular Structure, 2013, 1039, 61-70.	1.8	10
102	Highly oriented and polyoxometalate-incorporating surface-attached metal–organic frameworks for efficient dye adsorption and water oxidation. Dalton Transactions, 2020, 49, 16627-16632.	1.6	10
103	Electron Transfer Dynamics and Structural Effects in Benzonitrile Monolayers with Tuned Dipole Moments by Differently Positioned Fluorine Atoms. ACS Applied Materials & Interfaces, 2020, 12, 39859-39869.	4.0	10
104	Dynamics of Electron Transfer in Self-Assembled Monolayers with Acene Backbone. Journal of Physical Chemistry C, 2018, 122, 4105-4115.	1.5	9
105	Perfluorinated Acenes: Crystalline Phases, Polymorph-Selective Growth, and Optoelectronic Properties. Journal of Physical Chemistry C, 2021, 125, 19000-19012.	1.5	9
106	Ionâ€Beamâ€Induced Desorption as a Method for Probing the Stability of the Moleculeâ€Substrate Interface in Selfâ€Assembled Monolayers. ChemPhysChem, 2011, 12, 2554-2557.	1.0	8
107	Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. Beilstein Journal of Nanotechnology, 2017, 8, 2562-2571.	1.5	8
108	Reestablishing Odd–Even Effects in Anthracene-Derived Monolayers by Introduction of a Pseudo- <i>C</i> _{2<i>v</i>} Symmetry. Journal of Physical Chemistry C, 2019, 123, 20362-20372.	1.5	8

#	Article	IF	CITATIONS
109	Noncovalent Functionalization of Carbon Substrates with Hydrogels Improves Structural Analysis of Vitrified Proteins by Electron Cryo-Microscopy. ACS Nano, 2019, 13, 7185-7190.	7.3	8
110	Thermally Stable and Highly Conductive SAMs on Ag Substrate—The Impact of the Anchoring Group. Advanced Electronic Materials, 2021, 7, 2000947.	2.6	8
111	A model study on controlling dealloying corrosion attack by lateral modification of surfactant inhibitors. Npj Materials Degradation, 2021, 5, .	2.6	8
112	Nickel Deposition on Fluorinated, Aromatic Self-Assembled Monolayers: Chemically Induced Cross-Linking as a Tool for the Preparation of Well-Defined Top Metal Films. Journal of Physical Chemistry C, 2014, 118, 11763-11773.	1.5	7
113	Synergism in Bond Strength Modulation Opens an Alternative Concept for Protective Groups in Surface Chemistry. Journal of Physical Chemistry C, 2018, 122, 28839-28845.	1.5	7
114	Thin film reference electrodes for aqueous and organic media. Sensors and Actuators B: Chemical, 2012, 171-172, 155-164.	4.0	6
115	Substituted Dibenzodiazocines: Rapid Synthesis and Photochemical Properties. ACS Omega, 2021, 6, 18434-18441.	1.6	6
116	Modification of Pyridine-Terminated Aromatic Self-Assembled Monolayers by Electron Irradiation. Journal of Physical Chemistry C, 2017, 121, 9982-9990.	1.5	5
117	The role of the dihedral angle and excited cation states in ionization and dissociation of mono-halogenated biphenyls; a combined experimental and theoretical coupled cluster study. Physical Chemistry Chemical Physics, 2019, 21, 4556-4567.	1.3	4
118	Pronounced Solvent Effect on the Composition of Binary Self-Assembled Monolayers with Embedded Dipole Moments. Journal of Physical Chemistry C, 2020, 124, 28596-28604.	1.5	4
119	Potential-induced phase transition of benzoxazole-2-thiol, naphthaleneoxazole-2-thiol and anthraceneoxazole-2-thiol monolayers on gold electrodes. Electrochimica Acta, 2018, 283, 167-173.	2.6	3
120	Mobility of charge carriers in self-assembled monolayers. Beilstein Journal of Nanotechnology, 2019, 10, 2449-2458.	1.5	3
121	Relative cross sections and appearance energies in electron impact ionization and dissociation of mono-halogenated biphenyls. International Journal of Mass Spectrometry, 2021, 459, 116452.	0.7	3
122	Modification of Alkanethiolate Self-Assembled Monolayers by Ultraviolet Light: The Effect of Wavelength. Journal of Physical Chemistry C, 2021, 125, 1855-1864.	1.5	3
123	Electrochemical O-trifluoromethylation of electron-deficient phenols. Electrochemistry Communications, 2021, 133, 107165.	2.3	2
124	Minimization of Surface Energies and Ripening Outcompete Template Effects in the Surface Growth of Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 8488-8492.	1.6	1
125	Titelbild: Schaltung bakterieller Adhäon auf glycosylierten Oberflähen durch reversible Reorientierung der Kohlenhydratliganden (Angew. Chem. 52/2014). Angewandte Chemie, 2014, 126, 14501-14501.	1.6	0
126	Fluorinated Azaacenes: Efficient Syntheses, Structures, and Electrochemical Properties. Journal of Fluorine Chemistry, 2022, 257-258, 109960.	0.9	0