Pablo Garcia-Linares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in threeâ€ŧerminal heterojunction bipolar transistor solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 843-850.	4.4	6
2	A Threeâ€Terminal Hybrid Thermionicâ€Photovoltaic Energy Converter. Advanced Energy Materials, 2022, 12, .	10.2	17
3	High open-circuit voltage in transition metal dichalcogenide solar cells. Nano Energy, 2021, 79, 105427.	8.2	31
4	Contribution to the Study of Sub-Bandgap Photon Absorption in Quantum Dot InAs/AlGaAs Intermediate Band Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 420-428.	1.5	11
5	Considerations for the Design of a Heterojunction Bipolar Transistor Solar Cell. IEEE Journal of Photovoltaics, 2020, 10, 2-7.	1.5	7
6	Photovoltaic Anodes for Enhanced Thermionic Energy Conversion. ACS Energy Letters, 2020, 5, 1364-1370.	8.8	35
7	High open-circuit voltage Mos2 homojunction - effect of Schottky barriers at the contacts. , 2020, , .		0
8	III-V-on-silicon triple-junction based on the heterojunction bipolar transistor solar cell concept. , 2020, , .		4
9	Characterization of dualâ€junction IIIâ€V on Si tandem solar cells with 23.7% efficiency under low concentration. Progress in Photovoltaics: Research and Applications, 2019, 27, 652-661.	4.4	19
10	Novel heterojunction bipolar transistor architectures for the practical implementation of high-efficiency three-terminal solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 54-61.	3.0	12
11	Demonstrating the GaInP/GaAs Three-Terminal Heterojunction Bipolar Transistor Solar Cell. , 2019, , .		7
12	Potential of the three-terminal heterojunction bipolar transistor solar cell for space applications. , 2019, , .		2
13	Module interconnection for the three-terminal heterojunction bipolar transistor solar cell. AIP Conference Proceedings, 2018, , .	0.3	11
14	CURRICULAR EXPERIENTIAL LEARNING THROUGH A BLENDED COURSE OF COOPERATION FOR DEVELOPMENT IN WATER AND SANITATION. EDULEARN Proceedings, 2018, , .	0.0	0
15	Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review. Renewable and Sustainable Energy Reviews, 2017, 73, 477-495.	8.2	25
16	Interpretation of photovoltaic performance of n -ZnO:Al/ZnS:Cr/p-GaP solar cell. Solar Energy Materials and Solar Cells, 2017, 169, 56-60.	3.0	7
17	Three-Bandgap Absolute Quantum Efficiency in GaSb/GaAs Quantum Dot Intermediate Band Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 508-512.	1.5	21

#	Article	IF	CITATIONS
19	Developing a highly integrated receiverless low concentration module with III-V multijunction cells. AIP Conference Proceedings, 2016, , .	0.3	1
20	Characterization of the influence of temperature on achromatic mirrors by means of METHOD. AIP Conference Proceedings, 2016, , .	0.3	1
21	Manufacturing and Characterization of III-V on Silicon Multijunction Solar Cells. Energy Procedia, 2016, 92, 242-247.	1.8	10
22	Demonstration of the operation principles of intermediate band solar cells at room temperature. Solar Energy Materials and Solar Cells, 2016, 149, 15-18.	3.0	25
23	Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators. Optics Express, 2016, 24, A397.	1.7	10
24	Improving optical performance of concentrator cells by means of a deposited nanopattern layer. AIP Conference Proceedings, 2015, , .	0.3	6
25	Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass. AIP Conference Proceedings, 2015, , .	0.3	0
26	"METHOD― A tool for mechanical, electrical, thermal, and optical characterization of single lens module design. AIP Conference Proceedings, 2015, , .	0.3	2
27	HIT intermediate-band solar cells with self-assembled colloidal quantum dots and metal nanoparticles. , 2015, , .		0
28	Heterojunction Band Offset Limitations on Open-Circuit Voltage in <roman>p</roman> -Z <roman>n</roman> T <roman>e/n</roman> -Z <roman>n</roman> S <roman>e</roman> Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 874-877.	1.5	5
29	Quantum Dot Parameters Determination From Quantum-Efficiency Measurements. IEEE Journal of Photovoltaics, 2015, 5, 1074-1078.	1.5	13
30	Characterization of Multijunction Concentrator Solar Cells. Green Energy and Technology, 2015, , 39-84.	0.4	6
31	Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept. Solar Energy Materials and Solar Cells, 2015, 132, 178-182.	3.0	19
32	Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance. , 2014, , .		5
33	Effect of the encapsulant temperature on the angular and spectral response of multi-junction solar cells. , 2014, , .		6
34	Two-photon photocurrent and voltage up-conversion in a quantum dot intermediate band solar cell. , 2014, , .		9
35	Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells. Nanotechnology, 2013, 24, 345402.	1.3	54
36	Low-Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 753-761.	1.5	10

PABLO GARCIA-LINARES

#	Article	IF	CITATIONS
37	Interband optical absorption in quantum well solarcells. Solar Energy Materials and Solar Cells, 2013, 112, 20-26.	3.0	13
38	Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation. Physica B: Condensed Matter, 2013, 413, 73-81.	1.3	14
39	Some advantages of intermediate band solar cells based on type II quantum dots. Applied Physics Letters, 2013, 103, .	1.5	30
40	Extreme voltage recovery in GaAs:Ti intermediate band solar cells. Solar Energy Materials and Solar Cells, 2013, 108, 175-179.	3.0	22
41	Six not so easy pieces in intermediate band solar cell research. , 2013, , .		9
42	Six not-so-easy pieces in intermediate band solar cell research. Journal of Photonics for Energy, 2013, 3, 031299.	0.8	20
43	A puzzling solar cell structure: An exercise to get insight on intermediate band solar cells. , 2013, , .		2
44	Realistic performance prediction in nanostructured solar cells as a function of nanostructure dimensionality and density. Journal of Applied Physics, 2012, 112, 124518.	1.1	11
45	The effect of concentration on the performance of quantum dot intermediate-band solar cells. , 2012, , ,		7
46	Understanding experimental characterization of intermediate band solar cells. Journal of Materials Chemistry, 2012, 22, 22832.	6.7	24
47	InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps. , 2012, , .		25
48	Understanding the operation of quantum dot intermediate band solar cells. Journal of Applied Physics, 2012, 111, 044502.	1.1	41
49	Voltage recovery in intermediate band solar cells. Solar Energy Materials and Solar Cells, 2012, 98, 240-244.	3.0	77
50	Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells. Solar Energy Materials and Solar Cells, 2012, 103, 171-183.	3.0	26
51	III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells. Journal of Applied Physics, 2011, 109, 014313.	1.1	58
52	Modelling of quantum dot solar cells for concentrator PV applications. , 2011, , .		1
53	Application of photoluminescence and electroluminescence techniques to the characterization of intermediate band solar cells. Energy Procedia, 2011, 10, 117-121.	1.8	6
54	Radiative thermal escape in intermediate band solar cells. AIP Advances, 2011, 1, .	0.6	29

#	Article	IF	CITATIONS
55	New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2095-2101.	3.0	45
56	Hot carrier solar cells: Challenges and recent progress. , 2010, , .		7
57	Intraband absorption for normal illumination in quantum dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 2032-2035.	3.0	46
58	<mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mrow><mml:mstyle< td=""><td></td><td></td></mml:mstyle<></mml:mrow></mml:msub></mml:math>		