
Dmitry Bogachuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13, 3880-3916.	30.8	149
2	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	17.4	115
3	Employing 2Dâ€Perovskite as an Electron Blocking Layer in Highly Efficient (18.5%) Perovskite Solar Cells with Printable Low Temperature Carbon Electrode. Advanced Energy Materials, 2022, 12, .	19.5	60
4	Perovskite Photovoltaic Devices with Carbonâ€Based Electrodes Withstanding Reverseâ€Bias Voltages up to –9 V and Surpassing IEC 61215:2016 International Standard. Solar Rrl, 2022, 6, 2100527.	5.8	35
5	Comparison of highly conductive natural and synthetic graphites for electrodes in perovskite solar cells. Carbon, 2021, 178, 10-18.	10.3	33
6	Perovskite Solar Cells with Carbonâ€Based Electrodes – Quantification of Losses and Strategies to Overcome Them. Advanced Energy Materials, 2022, 12, .	19.5	29
7	The nature of the methylamine–MAPbI ₃ complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 2020, 8, 9788-9796.	10.3	28
8	Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultrathin Al ₂ O ₃ Isolating Layer. ACS Applied Nano Materials, 2020, 3, 2463-2471.	5.0	23
9	A 2D Model for Interfacial Recombination in Mesoscopic Perovskite Solar Cells with Printed Back Contact. Solar Rrl, 2021, 5, 2000595.	5.8	19
10	Fill Factor Assessment in Hole Selective Layer Free Carbon Electrodeâ€Based Perovskite Solar Cells with 15.5% Certified Power Conversion Efficiency. Solar Rrl, 2022, 6, .	5.8	14
11	Function of Porous Carbon Electrode during the Fabrication of Multiporous-Layered-Electrode Perovskite Solar Cells. Photonics, 2020, 7, 133.	2.0	11
12	Activation of Weak Monochromic Photocurrents by White Light Irradiation for Accurate IPCE Measurements of Carbon-Based Multi-Porous-Layered-Electrode Perovskite Solar Cells. Electrochemistry, 2020, 88, 418-422.	1.4	9
13	A novel recycling method for encapsulated perovskite mesoscopic photovoltaic devices with minimal performance loss. , 0, , .		1
14	Towards a Sustainable Energy Future: Fully Printable Carbon-Based Perovskite Solar Cells with Overcome Charge Transport Limitation and Improved Light-Harvesting Efficiency. , 0, , .		0
15	Stable, cost-effective, sustainable and recyclable perovskite photovoltaics using carbon-based electrodes. , 0, , .		Ο
16	Low Dimentional 2D Perovskite As An Effective Electron Blocking Layer In Efficient (18.5%) And Stable Hole-Selective Layer-Free Carbon Electrode Based Perovskite Solar Cells. , 0, , .		0
17	How to make perovskite photovoltaic devices stable under reverse bias. , 0, , .		0
18	Electron Blocking 2D Perovskite In Highly Efficient (18.5%) Hole-Selective Layer-Free Perovskite Solar		0

Cells Using Low-Temperature Processed Carbon Electrode. , 0, , .