
Xuemei Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315061/publications.pdf Version: 2024-02-01

XHEMELSHI

#	Article	IF	CITATIONS
1	Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 2016, 134, e653-e699.	1.6	1,423
2	Association between muscular strength and mortality in men: prospective cohort study. BMJ: British Medical Journal, 2008, 337, a439-a439.	2.4	611
3	Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk. Journal of the American College of Cardiology, 2014, 64, 472-481.	1.2	611
4	Cardiorespiratory Fitness and Adiposity as Mortality Predictors in Older Adults. JAMA - Journal of the American Medical Association, 2007, 298, 2507.	3.8	501
5	Long-Term Effects of Changes in Cardiorespiratory Fitness and Body Mass Index on All-Cause and Cardiovascular Disease Mortality in Men. Circulation, 2011, 124, 2483-2490.	1.6	482
6	Effects of Muscular Strength on Cardiovascular Risk Factors and Prognosis. Journal of Cardiopulmonary Rehabilitation and Prevention, 2012, 32, 351-358.	1.2	325
7	Role of Lifestyle and Aging on the Longitudinal Change in Cardiorespiratory Fitness. Archives of Internal Medicine, 2009, 169, 1781-7.	4.3	232
8	Running as a Key Lifestyle Medicine for Longevity. Progress in Cardiovascular Diseases, 2017, 60, 45-55.	1.6	214
9	A Prospective Study of Muscular Strength and All-Cause Mortality in Men With Hypertension. Journal of the American College of Cardiology, 2011, 57, 1831-1837.	1.2	201
10	A Prospective Study of Cardiorespiratory Fitness and Risk of Type 2 Diabetes in Women. Diabetes Care, 2008, 31, 550-555.	4.3	154
11	Associations of Cardiorespiratory Fitness and Obesity With Risks of Impaired Fasting Glucose and Type 2 Diabetes in Men. Diabetes Care, 2009, 32, 257-262.	4.3	148
12	Effects of Running on Chronic Diseases and Cardiovascular and All-Cause Mortality. Mayo Clinic Proceedings, 2015, 90, 1541-1552.	1.4	105
13	Associations of Resistance Exercise with Cardiovascular Disease Morbidity and Mortality. Medicine and Science in Sports and Exercise, 2019, 51, 499-508.	0.2	98
14	Longitudinal Algorithms to Estimate Cardiorespiratory Fitness. Journal of the American College of Cardiology, 2014, 63, 2289-2296.	1.2	97
15	Are lower levels of cardiorespiratory fitness associated with incident depression? A systematic review of prospective cohort studies. Preventive Medicine, 2016, 93, 159-165.	1.6	85
16	The Effect of Resistance Exercise on All-Cause Mortality in Cancer Survivors. Mayo Clinic Proceedings, 2014, 89, 1108-1115.	1.4	84
17	Muscular Strength Is Inversely Related to Prevalence and Incidence of Obesity in Adult Men. Obesity, 2010, 18, 1988-1995.	1.5	77
18	The Effect of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins. Journal of the American College of Cardiology, 2015, 65, 2091-2100.	1.2	77

Хиемеі Sui

#	Article	IF	CITATIONS
19	Effects of Cardiorespiratory Fitness onÂBlood Pressure Trajectory With AgingÂinÂaÂCohort of Healthy Men. Journal of the American College of Cardiology, 2014, 64, 1245-1253.	1.2	74
20	Cardiorespiratory Fitness and Incidence of Major Adverse Cardiovascular Events in US Veterans: A Cohort Study. Mayo Clinic Proceedings, 2017, 92, 39-48.	1.4	68
21	Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men. Medicine and Science in Sports and Exercise, 2010, 42, 288-295.	0.2	67
22	Age-Specific Exercise Capacity Threshold for Mortality Risk Assessment in Male Veterans. Circulation, 2014, 130, 653-658.	1.6	62
23	Influence of Cardiorespiratory Fitness on Lung Cancer Mortality. Medicine and Science in Sports and Exercise, 2010, 42, 872-878.	0.2	55
24	Exercise Capacity and Risk of Chronic Kidney Disease in US Veterans: A Cohort Study. Mayo Clinic Proceedings, 2015, 90, 461-468.	1.4	52
25	Impact of Changes in Cardiorespiratory Fitness on Hypertension, Dyslipidemia and Survival: An Overview of the Epidemiological Evidence. Progress in Cardiovascular Diseases, 2017, 60, 56-66.	1.6	52
26	Association of Muscular Strength and Incidence of Type 2 Diabetes. Mayo Clinic Proceedings, 2019, 94, 643-651.	1.4	46
27	Dietary indices, cardiovascular risk factors and mortality in middle-aged adults: findings from the Aerobics Center Longitudinal Study. Annals of Epidemiology, 2014, 24, 297-303.e2.	0.9	42
28	Cardiorespiratory Fitness and the Paradoxical BMI-Mortality Risk Association in Male Veterans. Mayo Clinic Proceedings, 2014, 89, 754-762.	1.4	36
29	Association of Cardiorespiratory Fitness With Coronary Heart Disease in Asymptomatic Men. Mayo Clinic Proceedings, 2015, 90, 1372-1379.	1.4	35
30	A Prospective Study of Fasting Plasma Glucose and Risk of Stroke in Asymptomatic Men. Mayo Clinic Proceedings, 2011, 86, 1042-1049.	1.4	31
31	Impact of fitness and changes in fitness on lipids and survival. Progress in Cardiovascular Diseases, 2019, 62, 431-435.	1.6	31
32	Nonexercise Estimated Cardiorespiratory Fitness and Mortality Due to All Causes and Cardiovascular Disease. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2017, 1, 16-25.	1.2	30
33	The role of cardiorespiratory fitness on plasma lipid levels. Expert Review of Cardiovascular Therapy, 2015, 13, 1177-1183.	0.6	29
34	Association of Resistance Exercise With the Incidence of Hypercholesterolemia in Men. Mayo Clinic Proceedings, 2018, 93, 419-428.	1.4	28
35	Nonexercise Estimated Cardiorespiratory Fitness and All-Cancer Mortality: the NHANES III Study. Mayo Clinic Proceedings, 2018, 93, 848-856.	1.4	28
36	The association between resistance exercise and cardiovascular disease risk in women. Journal of Science and Medicine in Sport, 2015, 18, 632-636.	0.6	26

Хиемеі Sui

#	Article	IF	CITATIONS
37	Change in Submaximal Cardiorespiratory Fitness and All-Cause Mortality. Mayo Clinic Proceedings, 2018, 93, 184-190.	1.4	26
38	Physical Activity, Cardiorespiratory Fitness, and Incident Glaucoma. Medicine and Science in Sports and Exercise, 2018, 50, 2253-2258.	0.2	25
39	An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application. Journal of Science in Sport and Exercise, 2019, 1, 38-53.	0.4	25
40	Chronic weight dissatisfaction predicts type 2 diabetes risk: Aerobic center longitudinal study Health Psychology, 2014, 33, 912-919.	1.3	24
41	Associations Between Television Watching and Car Riding Behaviors and Development of Depressive Symptoms: A Prospective Study. Mayo Clinic Proceedings, 2015, 90, 184-193.	1.4	24
42	A Fit-Fat Index for Predicting Incident Diabetes in Apparently Healthy Men: A Prospective Cohort Study. PLoS ONE, 2016, 11, e0157703.	1.1	24
43	Cross-sectional and longitudinal association of non-exercise estimated cardiorespiratory fitness with depression and anxiety in the general population: The HUNT study. Journal of Affective Disorders, 2019, 252, 122-129.	2.0	23
44	Cardiorespiratory Fitness and Incidence of Type 2 Diabetes in United States Veterans on Statin Therapy. American Journal of Medicine, 2017, 130, 1192-1198.	0.6	21
45	Resistance exercise, alone and in combination with aerobic exercise, and obesity in Dallas, Texas, US: A prospective cohort study. PLoS Medicine, 2021, 18, e1003687.	3.9	20
46	Longitudinal Patterns of Cardiorespiratory Fitness Predict the Development of Hypertension Among Men and Women. American Journal of Medicine, 2017, 130, 469-476.e2.	0.6	19
47	Muscular Fitness and Cardiometabolic Variables in Children and Adolescents: A Systematic Review. Sports Medicine, 2022, 52, 1555-1575.	3.1	19
48	Role of Muscular Strength on the Risk of Sudden Cardiac Death in Men. Mayo Clinic Proceedings, 2019, 94, 2589-2591.	1.4	18
49	Long-term Changes in Depressive Symptoms and Estimated Cardiorespiratory Fitness and Risk of All-Cause Mortality: The Nord-TrÃ,ndelag Health Study. Mayo Clinic Proceedings, 2018, 93, 1054-1064.	1.4	15
50	Percentage of Deaths Attributable to Poor Cardiovascular Health Lifestyle Factors: Findings from the Aerobics Center Longitudinal Study. Epidemiology Research International, 2013, 2013, 1-9.	0.2	14
51	Association between Cardiorespiratory Fitness and Health-Related Quality of Life among Patients at Risk for Cardiovascular Disease in Uruguay. PLoS ONE, 2015, 10, e0123989.	1.1	14
52	Are flexibility and muscle-strengthening activities associated with a higher risk of developing low back pain?. Journal of Science and Medicine in Sport, 2014, 17, 361-365.	0.6	13
53	Addition of estimated cardiorespiratory fitness to the clinical assessment of 10-year coronary heart disease risk in asymptomatic men. Preventive Medicine Reports, 2017, 7, 30-37.	0.8	13
54	ls There a Dose–Response Relationship between Tea Consumption and All-Cause, CVD, and Cancer Mortality?. Journal of the American College of Nutrition, 2017, 36, 281-286.	1.1	12

XUEMEI SUI

#	Article	IF	CITATIONS
55	Racial Differences in the Association Between Nonexercise Estimated Cardiorespiratory Fitness and Incident Stroke. Mayo Clinic Proceedings, 2018, 93, 884-894.	1.4	12
56	Metabolic syndrome and discrepancy between actual and self-identified good weight: Aerobics Center Longitudinal Study. Body Image, 2015, 13, 28-32.	1.9	11
57	Age- and sex- specific all-cause mortality risk greatest in metabolic syndrome combinations with elevated blood pressure from 7 U.S. cohorts. PLoS ONE, 2019, 14, e0218307.	1.1	11
58	Weight Status and Sedentary Behavior of Alzheimer's Disease Caregivers. American Journal of Health Behavior, 2020, 44, 3-12.	0.6	11
59	Association of Exercise Heart Rate Response and Incidence of Hypertension in Men. Mayo Clinic Proceedings, 2014, 89, 1101-1107.	1.4	10
60	Addition of Cardiorespiratory Fitness Within an Obesity Risk Classification Model Identifies Men at Increased Risk of All-Cause Mortality. American Journal of Medicine, 2016, 129, 536.e13-536.e20.	0.6	10
61	Cardiorespiratory Fitness and All-Cause Mortality in Men With Emotional Distress. Mayo Clinic Proceedings, 2017, 92, 918-924.	1.4	10
62	Personal activity intelligence and mortality – Data from the Aerobics Center Longitudinal Study. Progress in Cardiovascular Diseases, 2021, 64, 121-126.	1.6	10
63	Physical activity/fitness peaks during perimenopause and BMI change patterns are not associated with baseline activity/fitness in women: a longitudinal study with a median 7-year follow-up. British Journal of Sports Medicine, 2013, 47, 77-82.	3.1	9
64	Effects of Insufficient Physical Activity on Mortality and Life Expectancy in Jiangxi Province of China, 2007-2010. PLoS ONE, 2014, 9, e109826.	1.1	9
65	The effect of moderate-intensity exercise on nightly variability in objectively measured sleep parameters among older women. Behavioral Sleep Medicine, 2019, 17, 459-469.	1.1	9
66	Sedentary behaviour is associated with diabetes mellitus in adults: findings of a cross-sectional analysis from the Brazilian National Health System. Journal of Public Health, 2019, 41, 742-749.	1.0	7
67	All-cause mortality risk among active and inactive adults matched for cardiorespiratory fitness. European Journal of Preventive Cardiology, 2019, 26, 554-556.	0.8	6
68	Normalization of Muscle Strength Measurements in the Assessment of Cardiometabolic Risk Factors in Adolescents. International Journal of Environmental Research and Public Health, 2021, 18, 8428.	1.2	6
69	Simultaneous variable selection in regression analysis of multivariate intervalâ€censored data. Biometrics, 2022, 78, 1402-1413.	0.8	6
70	Relation of Body's Lean Mass, Fat Mass, and Body MassÂIndex With Submaximal Systolic Blood Pressure inÂYoung Adult Men. American Journal of Cardiology, 2016, 117, 394-398.	0.7	5
71	Relation Between Estimated Cardiorespiratory Fitness and Atrial Fibrillation (from the Reasons for) Tj ETQq1 1 1776-1780.	0.784314 rg 0.7	gBT /Overlock 5
72	Temporal changes in personal activity intelligence and mortality: Data from the aerobics center longitudinal study. Progress in Cardiovascular Diseases, 2021, 64, 127-134.	1.6	5

Хиемеі Sui

#	Article	IF	CITATIONS
73	Muscle strength cut-points for metabolic syndrome detection among adults and the elderly from Brazil. Applied Physiology, Nutrition and Metabolism, 2021, 46, 379-388.	0.9	5
74	Muscle strength and its association with cardiometabolic variables in adolescents: does the expression of muscle strength values matter?. World Journal of Pediatrics, 2021, 17, 597-608.	0.8	5
75	Heart rate recovery after treadmill exercise testing is an independent predictor of stroke incidence in men with metabolic syndrome. Obesity Research and Clinical Practice, 2011, 5, e295-e303.	0.8	4
76	Differential relationships between waist circumference and cardiorespiratory fitness among people with and without type 2 diabetes. Preventive Medicine Reports, 2020, 18, 101083.	0.8	4
77	A cross-sectional study of cardiorespiratory fitness and gallbladder disease. Annals of Epidemiology, 2017, 27, 269-273.e3.	0.9	3
78	The independent and joint associations among muscle strength, abdominal obesity and cardiometabolic variables among adults. European Journal of Sport Science, 2022, 22, 1122-1131.	1.4	3
79	Non-Exercise Estimated Cardiorespiratory Fitness and Incident Hypertension. American Journal of Medicine, 2022, 135, 906-914.	0.6	3
80	Estimating Cardiorespiratory Fitness Without Exercise Testing or Physical Activity Status in Healthy Adults: Regression Model Development and Validation. JMIR Public Health and Surveillance, 2022, 8, e34717.	1.2	3
81	In reply—Is Coffee Harmful? If Looking for Longevity, Say Yes to the Coffee, No to the Sugar. Mayo Clinic Proceedings, 2014, 89, 577.	1.4	2
82	In reply—Resistance Training and Cancer Survival. Mayo Clinic Proceedings, 2014, 89, 1465-1466.	1.4	1
83	Lifetime predictors of stroke in subjects without a diagnosis of hypertension: the aerobics center longitudinal study. Neuropsychiatric Disease and Treatment, 2019, Volume 15, 849-856.	1.0	1
84	Differential Age-Related Declines in Cardiorespiratory Fitness Between People With and Without Type 2 Diabetes Mellitus. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 743-752.	1.2	1
85	Muscle Strength Assessed by Handgrip Strength Moderates the Relationship Between Overweight and Obesity With Cardiometabolic Risk Markers Among Adults and Older Adults. Research Quarterly for Exercise and Sport, 2023, 94, 409-417.	0.8	1
86	Three Authors Reply. American Journal of Epidemiology, 2015, 182, 279-279.	1.6	0
87	Cardiorespiratory Fitness, Body Fatness, and Submaximal Systolic Blood Pressure Among Young Adult Women. Journal of Women's Health, 2016, 25, 897-903.	1.5	0
88	Causal mediation analysis between resistance exercise and reduced risk of cardiovascular disease based on the Aerobics Center Longitudinal Study. Journal of Applied Statistics, 0, , 1-18.	0.6	0