
## Shin-ichi Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8314998/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Max–min dispersion on a line. Journal of Combinatorial Optimization, 2020, , 1.                                                                                                                                                                                 | 1.3 | 4         |
| 2  | Efficient Algorithms for the Partial Sum Dispersion Problem. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, E103.A, 1206-1210.                                                                                  | 0.3 | 0         |
| 3  | Max-Min Dispersion on a Line. Lecture Notes in Computer Science, 2018, , 672-678.                                                                                                                                                                               | 1.3 | 4         |
| 4  | Exact Algorithms for the Max-Min Dispersion Problem. Lecture Notes in Computer Science, 2018, , 263-272.                                                                                                                                                        | 1.3 | 12        |
| 5  | Uniformly Random Generation of Floorplans. IEICE Transactions on Information and Systems, 2016, E99.D, 624-629.                                                                                                                                                 | 0.7 | 0         |
| 6  | A polynomial-time approximation scheme for the geometric unique coverage problem on unit squares.<br>Computational Geometry: Theory and Applications, 2016, 51, 25-39.                                                                                          | 0.5 | 7         |
| 7  | Tree Enumeration. , 2016, , 2252-2254.                                                                                                                                                                                                                          |     | 0         |
| 8  | Anti-Slide. Journal of Information Processing, 2015, 23, 252-257.                                                                                                                                                                                               | 0.4 | 2         |
| 9  | Another Optimal Binary Representation of Mosaic Floorplans. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 1223-1224.                                                                                    | 0.3 | 0         |
| 10 | A 4.31-approximation for the geometric unique coverage problem on unit disks. Theoretical Computer Science, 2014, 544, 14-31.                                                                                                                                   | 0.9 | 8         |
| 11 | Efficient Enumeration of All Ladder Lotteries with <i>k</i> Bars. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97.A, 1163-1170.                                                                              | 0.3 | 0         |
| 12 | Guest Editorial: Selected Papers from ISAAC 2011. Algorithmica, 2013, 67, 1-2.                                                                                                                                                                                  | 1.3 | 1         |
| 13 | BOUNDING THE NUMBER OF REDUCED TREES, COGRAPHS, AND SERIES-PARALLEL GRAPHS BY COMPRESSION. Discrete Mathematics, Algorithms and Applications, 2013, 05, 1360001.                                                                                                | 0.6 | 1         |
| 14 | A Compact Encoding of Rectangular Drawings with Edge Lengths. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96.A, 1032-1035.                                                                                  | 0.3 | 1         |
| 15 | Enumerating All Rooted Trees Including k Leaves. IEICE Transactions on Information and Systems, 2012, E95-D, 763-768.                                                                                                                                           | 0.7 | 0         |
| 16 | Efficient enumeration of ordered trees with <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline"<br/>overflow="scroll"&gt;<mml:mi>k</mml:mi> leaves. Theoretical Computer Science, 2012, 442,<br/>22-27.</mml:math<br> | 0.9 | 10        |
| 17 | Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression. Lecture<br>Notes in Computer Science, 2012, , 5-16.                                                                                                                  | 1.3 | 0         |
| 18 | Listing All st-Orientations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A, 1965-1970.                                                                                                                   | 0.3 | 2         |

**Shin-ichi** Nakano

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A compact encoding of plane triangulations with efficient query supports. Information Processing<br>Letters, 2010, 110, 803-809.                                  | 0.6 | 9         |
| 20 | A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs. Journal of Computer Science and Technology, 2009, 24, 517-533.                | 1.5 | 13        |
| 21 | Listing All Plane Graphs. Journal of Graph Algorithms and Applications, 2009, 13, 5-18.                                                                           | 0.4 | 7         |
| 22 | A Simple Canonical Code for Fullerene Graphs. IEICE Transactions on Fundamentals of Electronics,<br>Communications and Computer Sciences, 2009, E92-A, 3398-3400. | 0.3 | 0         |
| 23 | Generating all realizers. Electronics and Communications in Japan, 2006, 89, 40-47.                                                                               | 0.2 | 1         |
| 24 | CONVEX GRID DRAWINGS OF FOUR-CONNECTED PLANE GRAPHS. International Journal of Foundations of Computer Science, 2006, 17, 1031-1060.                               | 1.1 | 12        |
| 25 | Efficient generation of triconnected plane triangulations. Computational Geometry: Theory and Applications, 2004, 27, 109-122.                                    | 0.5 | 24        |
| 26 | Listing all rectangular drawings with certain properties. Systems and Computers in Japan, 2004, 35, 1-8.                                                          | 0.2 | 4         |
| 27 | Constant Time Generation of Trees with Specified Diameter. Lecture Notes in Computer Science, 2004, , 33-45.                                                      | 1.3 | 36        |
| 28 | Discovering Frequent Substructures in Large Unordered Trees. Lecture Notes in Computer Science, 2003, , 47-61.                                                    | 1.3 | 107       |
| 29 | Efficient generation of plane trees. Information Processing Letters, 2002, 84, 167-172.                                                                           | 0.6 | 48        |