Alexander J Bankovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8314926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ABBV-011, A Novel, Calicheamicin-Based Antibody–Drug Conjugate, Targets SEZ6 to Eradicate Small Cell Lung Cancer Tumors. Molecular Cancer Therapeutics, 2022, 21, 986-998.	4.1	7
2	A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Science Translational Medicine, 2017, 9, .	12.4	119
3	Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer. Cancer Research, 2017, 77, 3931-3941.	0.9	91
4	Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions. Clinical Cancer Research, 2015, 21, 4165-4173.	7.0	78
5	A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Science Translational Medicine, 2015, 7, 302ra136.	12.4	436
6	FTY720 Blocks Egress of T Cells in Part by Abrogation of Their Adhesion on the Lymph Node Sinus. Journal of Immunology, 2011, 187, 2244-2251.	0.8	41
7	CD69 Suppresses Sphingosine 1-Phosophate Receptor-1 (S1P1) Function through Interaction with Membrane Helix 4. Journal of Biological Chemistry, 2010, 285, 22328-22337.	3.4	253
8	T-bet–dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. Journal of Experimental Medicine, 2009, 206, 2469-2481.	8.5	290
9	The Diversity of Nuclear Magnetic Resonance Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 65-81.	0.3	0
10	Different Thermodynamic Binding Mechanisms and Peptide Fine Specificities Associated with a Panel of Structurally Similar High-Affinity T Cell Receptors. Biochemistry, 2008, 47, 12398-12408.	2.5	24
11	Solution mapping of T cell receptor docking footprints on peptide-MHC. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13080-13085.	7.1	45
12	How a Single T Cell Receptor Recognizes Both Self and Foreign MHC. Cell, 2007, 129, 135-146.	28.9	217
13	Elucidation of the Interleukin-15 Binding Site on Its Alpha Receptor by NMR. Biochemistry, 2007, 46, 9453-9461.	2.5	27
14	Structural Insight into Pre-B Cell Receptor Function. Science, 2007, 316, 291-294.	12.6	101
15	Engineering and Characterization of a Stabilized α1/α2 Module of the Class I Major Histocompatibility Complex Product Ld. Journal of Biological Chemistry, 2006, 281, 25734-25744.	3.4	51
16	Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages. Immunology Letters, 2004, 95, 185-192.	2.5	33
17	Peptide register shifting within the MHC groove: theory becomes reality. Molecular Immunology, 2004, 40, 1033-1039.	2.2	53
18	Structure of a Human A-type Potassium Channel Interacting Protein DPPX, a Member of the Dipeptidyl Aminopeptidase Family. Journal of Molecular Biology, 2004, 343, 1055-1065.	4.2	92

#	Article	IF	CITATIONS
19	Not Just Any T Cell Receptor Will Do. Immunity, 2003, 18, 7-11.	14.3	48
20	Convergent Mechanisms for Recognition of Divergent Cytokines by the Shared Signaling Receptor gp130. Molecular Cell, 2003, 12, 577-589.	9.7	131
21	Visualization of the Transfer Reaction: Tracking Immune Complexes from Erythrocyte Complement Receptor 1 to Macrophages. Clinical Immunology, 2002, 105, 36-47.	3.2	30
22	Targeting ofPseudomonas aeruginosain the Bloodstream with Bispecific Monoclonal Antibodies. Journal of Immunology, 2001, 167, 2240-2249.	0.8	44
23	Clearance of anti-double-stranded DNA antibodies: The natural immune complex clearance mechanism. Arthritis and Rheumatism, 2000, 43, 2265-2275.	6.7	27