Thomas R Hawn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8314862/publications.pdf

Version: 2024-02-01

257357 189801 2,994 50 24 50 citations h-index g-index papers 53 53 53 4737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Resistance to Mycobacterium tuberculosis infection among highly TB exposed South African gold miners. PLoS ONE, 2022, 17, e0265036.	1.1	10
2	Tracking SARS-CoV-2 Spike Protein Mutations in the United States (January 2020—March 2021) Using a Statistical Learning Strategy. Viruses, 2022, 14, 9.	1.5	10
3	Mycobacterium tuberculosis infection, immune activation, and risk of HIV acquisition. PLoS ONE, 2022, 17, e0267729.	1.1	2
4	A CD4+ TNF+ monofunctional memory T-cell response to BCG vaccination is associated with Mycobacterium tuberculosis infection in infants exposed to HIV. EBioMedicine, 2022, 80, 104023.	2.7	3
5	Cumulative <i>Mycobacterium tuberculosis</i> Infection Incidence (Measured Primarily by Tuberculin) Tj ETQq1 1 an Isoniazid Prophylaxis Trial. Clinical Infectious Diseases, 2022, 75, 2253-2256.	1 0.784314 2.9	4 rgBT /Ov <mark>erl</mark> 1
6	Monocyte Transcriptional Responses to Mycobacterium tuberculosis Associate with Resistance to Tuberculin Skin Test and Interferon Gamma Release Assay Conversion. MSphere, 2022, 7, .	1.3	8
7	A Randomized Controlled Trial of Isoniazid to Prevent <i>Mycobacterium tuberculosis</i> Infection in Kenyan Human Immunodeficiency Virus–Exposed Uninfected Infants. Clinical Infectious Diseases, 2021, 73, e337-e344.	2.9	5
8	Genetic Variation in Toll-Like Receptor 5 and Colonization with Flagellated Bacterial Vaginosis-Associated Bacteria. Infection and Immunity, 2021, 89, .	1.0	3
9	Latent Tuberculosis Infection and Subclinical Coronary Atherosclerosis in Peru and Uganda. Clinical Infectious Diseases, 2021, 73, e3384-e3390.	2.9	21
10	HDAC3 inhibitor RGFP966 controls bacterial growth and modulates macrophage signaling during Mycobacterium tuberculosis infection. Tuberculosis, 2021, 127, 102062.	0.8	11
11	Mitigating myopia in tuberculosis. Nature Immunology, 2021, 22, 675-676.	7.0	0
12	Non-IFNÎ ³ Whole Blood Cytokine Responses to Mycobacterium tuberculosis Antigens in HIV-exposed Infants. Pediatric Infectious Disease Journal, 2021, 40, 922-929.	1.1	4
13	Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-Î ³ release assay conversion. Journal of Clinical Investigation, 2021, 131, .	3.9	13
14	Resistance to TST/IGRA conversion in Uganda: Heritability and Genome-Wide Association Study. EBioMedicine, 2021, 74, 103727.	2.7	9
15	Importance of Study Design and Phenotype Definition in Ongoing Studies of Resistance to Latent Mycobacterium tuberculosis Infection. Journal of Infectious Diseases, 2020, 221, 1025-1026.	1.9	5
16	Nicotinamide Limits Replication of Mycobacterium tuberculosis and Bacille Calmette-Guérin Within Macrophages. Journal of Infectious Diseases, 2020, 221, 989-999.	1.9	14
17	Polymorphisms in interferon pathway genes and risk of Mycobacterium tuberculosis infection in contacts of tuberculosis cases in Brazil. International Journal of Infectious Diseases, 2020, 92, 21-28.	1.5	13
18	Infant TB Infection Prevention Study (iTIPS): a randomised trial protocol evaluating isoniazid to prevent <i>M. tuberculosis</i> infection in HIV-exposed uninfected children. BMJ Open, 2020, 10, e034308.	0.8	7

#	Article	IF	Citations
19	Fine-mapping analysis of a chromosome 2 region linked to resistance to Mycobacterium tuberculosis infection in Uganda reveals potential regulatory variants. Genes and Immunity, 2019, 20, 473-483.	2.2	18
20	TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia. Mucosal Immunology, 2019, 12, 1382-1390.	2.7	15
21	Nontuberculous Mycobacteria and Heterologous Immunity to Tuberculosis. Journal of Infectious Diseases, 2019, 220, 1091-1098.	1.9	19
22	IFN- \hat{l}^3 -independent immune markers of Mycobacterium tuberculosis exposure. Nature Medicine, 2019, 25, 977-987.	15.2	186
23	Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science, 2019, 363, .	6.0	296
24	Long-term Stability of Resistance to Latent Mycobacterium tuberculosis Infection in Highly Exposed Tuberculosis Household Contacts in Kampala, Uganda. Clinical Infectious Diseases, 2019, 68, 1705-1712.	2.9	46
25	Remembering the Host in Tuberculosis Drug Development. Journal of Infectious Diseases, 2019, 219, 1518-1524.	1.9	33
26	Clinical Development of New TB Vaccines: Recent Advances and Next Steps. Frontiers in Microbiology, 2019, 10, 3154.	1.5	56
27	Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nature Reviews Immunology, 2018, 18, 575-589.	10.6	241
28	The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathogens, 2018, 14, e1006829.	2.1	43
29	A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin–Specific Immune Responses and Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 502-511.	2.5	38
30	Tuberculous uveitis: association between anti-tuberculous therapy and clinical response in a non-endemic country. Journal of Ophthalmic Inflammation and Infection, 2017, 7, 19.	1.2	12
31	Transcriptional networks are associated with resistance to Mycobacterium tuberculosis infection. PLoS ONE, 2017, 12, e0175844.	1.1	64
32	Human ULK1 Variation and Susceptibility to <i>Mycobacterium tuberculosis</i> Infection. Journal of Infectious Diseases, 2016, 214, 1260-1267.	1.9	36
33	Genetic Variation in Toll-Interacting Protein Is Associated With Leprosy Susceptibility and Cutaneous Expression of Interleukin 1 Receptor Antagonist. Journal of Infectious Diseases, 2016, 213, 1189-1197.	1.9	17
34	COMPASS identifies T-cell subsets correlated with clinical outcomes. Nature Biotechnology, 2015, 33, 610-616.	9.4	232
35	Polymorphisms in TICAM2 and IL1B are associated with TB. Genes and Immunity, 2015, 16, 127-133.	2.2	49
36	New tricks for old dogs: countering antibiotic resistance in tuberculosis with hostâ€directed therapeutics. Immunological Reviews, 2015, 264, 344-362.	2.8	58

#	Article	IF	Citations
37	T Cell Responses against Mycobacterial Lipids and Proteins Are Poorly Correlated in South African Adolescents. Journal of Immunology, 2015, 195, 4595-4603.	0.4	27
38	Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection. Journal of Immunology, 2014, 193, 6081-6089.	0.4	54
39	Differential Dermal Expression of CCL17 and CCL18 in Tuberculoid and Lepromatous Leprosy. PLoS Neglected Tropical Diseases, 2014, 8, e3263.	1.3	10
40	Tuberculosis Vaccines and Prevention of Infection. Microbiology and Molecular Biology Reviews, 2014, 78, 650-671.	2.9	133
41	Toll-Like Receptor Polymorphisms and Susceptibility to Urinary Tract Infections in Adult Women. PLoS ONE, 2009, 4, e5990.	1.1	170
42	Genetic Variation of the Human Urinary Tract Innate Immune Response and Asymptomatic Bacteriuria in Women. PLoS ONE, 2009, 4, e8300.	1.1	68
43	Altered Inflammatory Responses in TLR5-Deficient Mice Infected with <i>Legionella pneumophila</i> Journal of Immunology, 2007, 179, 6981-6987.	0.4	99
44	A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. European Journal of Immunology, 2007, 37, 2280-2289.	1.6	176
45	A Polymorphism in Tollâ€Interleukin 1 Receptor Domain Containing Adaptor Protein Is Associated with Susceptibility to Meningeal Tuberculosis. Journal of Infectious Diseases, 2006, 194, 1127-1134.	1.9	166
46	Myeloid Differentiation Primary Response Gene (88)– and Tollâ€Like Receptor 2–Deficient Mice Are Susceptible to Infection with AerosolizedLegionella pneumophila. Journal of Infectious Diseases, 2006, 193, 1693-1702.	1.9	103
47	A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10593-10597.	3.3	144
48	Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2487-2489.	3.3	157
49	Hyper-IgE Syndrome Is Not Associated With Defects in Several Candidate Toll-Like Receptor Pathway Genes. Human Immunology, 2005, 66, 842-847.	1.2	12
50	Leishmania major activates IL- $1\hat{l}\pm$ expression in macrophages through a MyD88-dependent pathway. Microbes and Infection, 2002, 4, 763-771.	1.0	70