Philip K. Hopke

List of Publications by Citations

Source: https://exaly.com/author-pdf/8314697/philip-k-hopke-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

857	33,991	78	148
papers	citations	h-index	g-index
934	38,134 ext. citations	5.5	7.53
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
857	Bounding the role of black carbon in the climate system: A scientific assessment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5380-5552	4.4	3330
856	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. <i>Environmental Science & Environmental Scienc</i>	10.3	682
855	Source apportionment of particulate matter in Europe: A review of methods and results. <i>Journal of Aerosol Science</i> , 2008 , 39, 827-849	4.3	674
854	Atmospheric aerosol over Alaska: 2. Elemental composition and sources. <i>Journal of Geophysical Research</i> , 1998 , 103, 19045-19057		574
853	Discarding or downweighting high-noise variables in factor analytic models. <i>Analytica Chimica Acta</i> , 2003 , 490, 277-289	6.6	447
852	Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. <i>Atmospheric Environment</i> , 2009 , 43, 2770-2780	5.3	404
851	Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. <i>Atmospheric Environment</i> , 2013 , 69, 94-108	5.3	382
850	Atmospheric aerosol over Vermont: chemical composition and sources. <i>Environmental Science & Environmental & Environme</i>	10.3	335
849	Review of receptor model fundamentals. <i>Atmospheric Environment</i> , 1984 , 18, 1507-1515		327
848	Understanding and controlling rotations in factor analytic models. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2002 , 60, 253-264	3.8	295
847	Comparison of hybrid receptor models to locate PCB sources in Chicago. <i>Atmospheric Environment</i> , 2003 , 37, 545-562	5.3	291
846	Classification of Single Particles Analyzed by ATOFMS Using an Artificial Neural Network, ART-2A. <i>Analytical Chemistry</i> , 1999 , 71, 860-865	7.8	273
845	Review of receptor modeling methods for source apportionment. <i>Journal of the Air and Waste Management Association</i> , 2016 , 66, 237-59	2.4	269
844	Source identification of atlanta aerosol by positive matrix factorization. <i>Journal of the Air and Waste Management Association</i> , 2003 , 53, 731-9	2.4	264
843	Multielemental characterization of urban roadway dust. <i>Environmental Science & Emp; Technology</i> , 1980 , 14, 164-172	10.3	261
842	Sources of fine particle composition in the northeastern US. Atmospheric Environment, 2001, 35, 5277-	5286	251
841	Recent developments in receptor modeling. <i>Journal of Chemometrics</i> , 2003 , 17, 255-265	1.6	237

(2008-2000)

840	Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. <i>Atmospheric Environment</i> , 2000 , 34, 3319-3329	5.3	224
839	Source apportionment of PM_{2.5} in Seoul, Korea. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4957-4971	6.8	221
838	Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. <i>Inhalation Toxicology</i> , 2012 , 24, 850-7	2.7	215
837	Source regions for atmospheric aerosol measured at Barrow, Alaska. <i>Environmental Science & Environmental Science & Technology</i> , 2001 , 35, 4214-26	10.3	215
836	Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. <i>Environmental Health Perspectives</i> , 2008 , 116, 459-66	8.4	210
835	Characterization of the Gent Stacked Filter Unit PM10 Sampler. <i>Aerosol Science and Technology</i> , 1997 , 27, 726-735	3.4	209
834	The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol. <i>Atmospheric Environment</i> , 1976 , 10, 1015-25		199
833	Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. <i>Atmospheric Environment</i> , 2004 , 38, 3025-3038	5.3	195
832	Recent developments in CANDECOMP/PARAFAC algorithms: a critical review. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2003 , 65, 119-137	3.8	183
831	A study of the sources of acid precipitation in Ontario, Canada. <i>Atmospheric Environment</i> , 1989 , 23, 1499	9-1509	182
830	The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. <i>Atmospheric Environment</i> , 2004 , 38, 5193-5204	5.3	177
829	Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. <i>Atmospheric Environment</i> , 2004 , 38, 3349-3362	5.3	171
828	Identification of sources of Phoenix aerosol by positive matrix factorization. <i>Journal of the Air and Waste Management Association</i> , 2000 , 50, 1308-20	2.4	164
827	A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. <i>Atmospheric Environment</i> , 2005 , 39, 193-201	5.3	162
826	PM source apportionment and health effects: 1. Intercomparison of source apportionment results. Journal of Exposure Science and Environmental Epidemiology, 2006 , 16, 275-86	6.7	155
825	Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 1	8.4	151
824	Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2006 , 78, 8299-304	7.8	139
823	Urban air quality in the Asian region. <i>Science of the Total Environment</i> , 2008 , 404, 103-12	10.2	133

822	Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. <i>Atmospheric Environment</i> , 2006 , 40, 360-377	5.3	132
821	Source identification of PM2.5 in an arid Northwest U.S. City by positive matrix factorization. <i>Atmospheric Research</i> , 2003 , 66, 291-305	5.4	132
820	Qualitative determination of source regions of aerosol in Canadian high Arctic. <i>Environmental Science & Environmental Science</i>	10.3	129
819	Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. <i>Environmental Science & Environmental Science &</i>	10.3	125
818	Rotational tools for factor analytic models. <i>Journal of Chemometrics</i> , 2009 , 23, 91-100	1.6	123
817	Workgroup report: workshop on source apportionment of particulate matter health effectsintercomparison of results and implications. <i>Environmental Health Perspectives</i> , 2005 , 113, 1768	3 ⁸ 74	122
816	PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2006 , 16, 300-10	6.7	121
815	PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2006 , 16, 311-20	6.7	120
814	Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. <i>Atmospheric Environment</i> , 2005 , 39, 3719-3724	5.3	120
813	Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. <i>Atmospheric Environment</i> , 2007 , 41, 6762-6770	5.3	119
812	Comparison between Conditional Probability Function and Nonparametric Regression for Fine Particle Source Directions. <i>Atmospheric Environment</i> , 2004 , 38, 4667-4673	5.3	119
811	Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. <i>Atmospheric Environment</i> , 2012 , 46, 329-337	5.3	118
810	Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. <i>Atmospheric Environment</i> , 2007 , 41, 506-518	5.3	116
809	Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. <i>Journal of the Air and Waste Management Association</i> , 2004 , 54, 773-85	2.4	115
808	On the source contribution to Beijing PM2.5 concentrations. <i>Atmospheric Environment</i> , 2016 , 134, 84-95	5.3	114
80 7	Laboratory assessment of low-cost PM monitors. <i>Journal of Aerosol Science</i> , 2016 , 102, 29-40	4.3	111
806	Airflow and Deposition of Nano-Particles in a Human Nasal Cavity. <i>Aerosol Science and Technology</i> , 2006 , 40, 463-476	3.4	107
805	The concentrations and sources of PM2.5 in metropolitan New York City. <i>Atmospheric Environment</i> , 2006 , 40, 312-332	5.3	106

804	Identification of Source Nature and Seasonal Variations of Arctic Aerosol byPositive Matrix Factorization. <i>Journals of the Atmospheric Sciences</i> , 1999 , 56, 249-260	2.1	103
803	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. <i>Atmospheric Environment</i> , 2009 , 43, 3989-3997	5.3	102
802	Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh. <i>Aerosol Science and Technology</i> , 2006 , 40, 952-961	3.4	102
801	Sources of fine particle composition in New York city. <i>Atmospheric Environment</i> , 2004 , 38, 6521-6529	5.3	102
800	Application of modified alternating least squares regression to spectroscopic image analysis. <i>Analytica Chimica Acta</i> , 2003 , 476, 93-109	6.6	102
799	Analysis of ambient particle size distributions using Unmix and positive matrix factorization. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	98
798	The evolution of chemometrics. <i>Analytica Chimica Acta</i> , 2003 , 500, 365-377	6.6	98
797	Receptor Modeling Assessment of Particle Total Exposure Assessment Methodology Data. <i>Environmental Science & Environmental Sc</i>	10.3	98
796	Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. <i>Environmental Research</i> , 2014 , 129, 11-9	7.9	97
795	A quantitative determination of sources in the Boston urban aerosol. <i>Atmospheric Environment</i> , 1980 , 14, 1137-46		97
794	Source characterization of ambient fine particles at multiple sites in the Seattle area. <i>Atmospheric Environment</i> , 2008 , 42, 6047-6056	5.3	96
793	Advanced Factor Analysis on Pittsburgh Particle Size-Distribution Data Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. <i>Aerosol Science and Technology</i> , 2004 , 38, 118-132	3.4	96
792	Measurement of Particle-Bound Reactive Oxygen Species in Rubidoux Aerosols. <i>Journal of Atmospheric Chemistry</i> , 2005 , 50, 49-58	3.2	96
791	Initial Size Distributions and Hygroscopicity of Indoor Combustion Aerosol Particles. <i>Aerosol Science and Technology</i> , 1993 , 19, 305-316	3.4	95
790	Characterization of residential wood combustion particles using the two-wavelength aethalometer. <i>Environmental Science & Environmental Science & Envi</i>	10.3	92
7 ⁸ 9	Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the Arctic. <i>Biometrics</i> , 2001 , 57, 22-33	1.8	92
788	Locating and quantifying PCB sources in Chicago: receptor modeling and field sampling. <i>Environmental Science & Environmental </i>	10.3	89
787	Inspiratory deposition of ultrafine particles in human nasal replicate cast. <i>Journal of Aerosol Science</i> , 1992 , 23, 65-72	4.3	88

786	Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. <i>Atmospheric Environment</i> , 2006 , 40, 396-410	5.3	87
7 ⁸ 5	Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. <i>Environmental Science & Environmental S</i>	10.3	86
7 ⁸ 4	Review of factors impacting emission/concentration of cooking generated particulate matter. <i>Science of the Total Environment</i> , 2017 , 586, 1046-1056	10.2	85
783	Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. <i>Atmospheric Environment</i> , 2003 , 37, 4997-5007	5.3	85
782	Are ambient ultrafine, accumulation mode, and fine particles associated with adverse cardiac responses in patients undergoing cardiac rehabilitation?. <i>Environmental Health Perspectives</i> , 2012 , 120, 1162-9	8.4	84
781	Impact of Middle Eastern Dust storms on human health. Atmospheric Pollution Research, 2017, 8, 606-61	3 4.5	81
78o	Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. <i>Environmental Science & Environmental Science & Env</i>	10.3	79
779	Measurement of total PM2.5 mass (nonvolatile plus semivolatile) with the Filter Dynamic Measurement System tapered element oscillating microbalance monitor. <i>Journal of Geophysical Research</i> , 2005 , 110,		78
778	Identification of sources contributing to Mid-Atlantic regional aerosol. <i>Journal of the Air and Waste Management Association</i> , 2002 , 52, 1186-205	2.4	78
777	Neutralization kinetics for polonium-218. Environmental Science & Environmenta	10.3	78
776	A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. <i>Journal of Aerosol Science</i> , 2012 , 46, 64-76	4.3	76
775	Air pollution by fine particulate matter in Bangladesh. <i>Atmospheric Pollution Research</i> , 2013 , 4, 75-86	4.5	76
774	Long-term study of urban ultrafine particles and other pollutants. <i>Atmospheric Environment</i> , 2011 , 45, 7672-7680	5.3	75
773	Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. <i>Atmospheric Environment</i> , 2016 , 146, 90-99	5.3	75
772	Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation. <i>Environmental Science & Environmental Science & </i>	10.3	74
771	Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. <i>Atmospheric Environment</i> , 2003 , 37, 3289-3302	5.3	74
77°	Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. <i>Journal of the Air and Waste Management Association</i> , 2004 , 54, 1494-505	2.4	74
769	Coal use for residential heating: Patterns, health implications and lessons learned. <i>Energy for Sustainable Development</i> , 2017 , 40, 19-30	5.4	73

768	PM2.5 and ultrafine particles emitted during heating of commercial cooking oils. <i>Indoor Air</i> , 2012 , 22, 483-91	5.4	73	
767	Key issues in controlling air pollutants in Dhaka, Bangladesh. <i>Atmospheric Environment</i> , 2011 , 45, 7705-	77;133	73	
766	A determination of the sources of airborne particles collected during the regional air pollution study. <i>Atmospheric Environment</i> , 1981 , 15, 675-687		73	
765	Polybrominated diphenyl ethers (PBDEs): turning the corner in Great Lakes trout 1980-2009. Environmental Science & Environmental Science & Environmen	10.3	72	
764	Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. <i>Indoor Air</i> , 2006 , 16, 204-15	5.4	72	
763	Health Risks Due to Radon in Drinking Water. <i>Environmental Science & Technology</i> , 2000 , 34, 921-9	26 0.3	72	
762	Indoor air pollution from particulate matter emissions in different households in rural areas of Bangladesh. <i>Building and Environment</i> , 2009 , 44, 898-903	6.5	71	
761	Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. <i>Environmental Science & Eamp; Technology</i> , 2005 , 39, 1715-23	10.3	71	
760	Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days. <i>Science of the Total Environment</i> , 2014 , 494-495, 84-96	10.2	70	
759	Chemical Composition of Wood Chips and Wood Pellets. <i>Energy & Energy & Ene</i>	4.1	70	
758	Atmospheric mercury (Hg) in the Adirondacks: concentrations and sources. <i>Environmental Science & Environmental Science</i> & Environmental Science & Env	10.3	70	
757	Characterization of Wintertime Reactive Oxygen Species Concentrations in Flushing, New York. <i>Aerosol Science and Technology</i> , 2007 , 41, 97-111	3.4	70	
756	Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		70	
755	Atmospheric gaseous mercury concentrations in New York State: relationships with meteorological data and other pollutants. <i>Atmospheric Environment</i> , 2004 , 38, 6431-6446	5.3	70	
754	A receptor-oriented methodology for determining source regions of particulate sulfate observed at Dorset, Ontario. <i>Journal of Geophysical Research</i> , 1993 , 98, 16839		70	
753	Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. <i>Public Health</i> , 2017 , 148, 109-116	4	69	
752	Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. <i>Atmospheric Research</i> , 2015 , 166, 223-232	5.4	69	
751	On-road exposure to highway aerosols. 1. Aerosol and gas measurements. <i>Inhalation Toxicology</i> , 2004 , 16 Suppl 1, 31-9	2.7	69	

75°	On improving the validity of wire screen "unattached" fraction Rn daughter measurements. <i>Health Physics</i> , 1989 , 56, 189-94	2.3	69
749	Receptor modeling for multiple time resolved species: The Baltimore supersite. <i>Atmospheric Environment</i> , 2005 , 39, 3751-3762	5.3	67
748	A chamber study of secondary organic aerosol formation by limonene ozonolysis. <i>Indoor Air</i> , 2010 , 20, 320-8	5.4	66
747	Major Source Categories for PM2.5 in Pittsburgh using PMF and UNMIX. <i>Aerosol Science and Technology</i> , 2006 , 40, 910-924	3.4	66
746	Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. <i>Journal of Geophysical Research</i> , 2004 , 109,		66
745	Sources of fine particles in a rural midwestern U.S. area. <i>Environmental Science & Environmental Scie</i>	10.3	65
744	Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization. <i>Atmospheric Environment</i> , 2005 , 39, 5934-5946	5.3	65
743	Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India. <i>Aerosol and Air Quality Research</i> , 2008 , 8, 423-436	4.6	65
742	Chemical nature of PM and PM in Xi'an, China: Insights into primary emissions and secondary particle formation. <i>Environmental Pollution</i> , 2018 , 240, 155-166	9.3	64
741	Characterization of ambient black carbon and wood burning particles in two urban areas. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1919-26		64
740	Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. <i>Science of the Total Environment</i> , 2008 , 398, 133-44	10.2	64
739	Chemical compositions and source identification of particulate matter (PM 2.5 and PM 2.510) from a scrap iron and steel smelting industry along the IfeIbadan highway, Nigeria. <i>Atmospheric Pollution Research</i> , 2015 , 6, 107-119	4.5	63
738	Environmental neutralization of polonium-218. Environmental Science & Environm	1 <u>£0</u> .3	63
737	PM2.5 and gaseous pollutants in New York State during 2005\(\bar{\pi}\)016: Spatial variability, temporal trends, and economic influences. <i>Atmospheric Environment</i> , 2018 , 183, 209-224	5.3	62
736	Sources of fine urban particulate matter in Detroit, MI. Chemosphere, 2007, 69, 1064-74	8.4	62
735	Advanced factor analysis for multiple time resolution aerosol composition data. <i>Atmospheric Environment</i> , 2004 , 38, 4909-4920	5.3	62
734	Comparison of rule-building expert systems with pattern recognition for the classification of analytical data. <i>Analytical Chemistry</i> , 1987 , 59, 1868-1871	7.8	62
733	Identification of Sources of Fine and Coarse Particulate Matter in Dhaka, Bangladesh. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 345-353	4.6	62

732	Global review of recent source apportionments for airborne particulate matter. <i>Science of the Total Environment</i> , 2020 , 740, 140091	10.2	61	
731	Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. <i>Atmospheric Environment</i> , 2006 , 40, 3788-38	10 ⁵ 1 ³	61	
730	Secondary organic aerosol from alpha-pinene ozonolysis in dynamic chamber system. <i>Indoor Air</i> , 2009 , 19, 335-45	5.4	60	
729	Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. <i>Science of the Total Environment</i> , 2008 , 397, 229-37	10.2	60	
728	Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. <i>Inhalation Toxicology</i> , 2007 , 19, 1-12	2.7	60	
727	Interlaboratory comparison of source apportionment procedures: Results for simulated data sets. <i>Atmospheric Environment</i> , 1984 , 18, 1517-1537		60	
726	Residential coal combustion as a source of primary sulfate in Xi'an, China. <i>Atmospheric Environment</i> , 2019 , 196, 66-76	5.3	60	
725	Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. <i>Inhalation Toxicology</i> , 2008 , 20, 1093-100	2.7	59	
724	Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 1296-307	2.4	58	
723	Exploring the Variation between EC and BC in a Variety of Locations. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1-7	4.6	58	
722	Source and risk apportionment of selected VOCs and PMIIspecies using partially constrained receptor models with multiple time resolution data. <i>Environmental Pollution</i> , 2015 , 205, 121-30	9.3	57	
721	Three-way (PARAFAC) factor analysis: examination and comparison of alternative computational methods as applied to ill-conditioned data. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1998 , 43, 25-42	3.8	57	
720	Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. <i>Journal of the Air and Waste Management Association</i> , 2005 , 55, 1190-9	2.4	57	
719	Comparison of Positive Matrix Factorization and Multilinear Engine for the source apportionment of particulate pollutants. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2003 , 66, 15-28	3.8	57	
718	Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. <i>Environmental Research</i> , 2017 , 156, 683-687	7.9	56	
717	Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the Middle Eastern Dust storms. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 16860-16868	5.1	56	
716	Source apportionment of airborne particulate matter using inorganic and organic species as tracers. <i>Atmospheric Environment</i> , 2012 , 55, 525-532	5.3	56	
715	Estimating Hourly Concentrations of PM across a Metropolitan Area Using Low-Cost Particle Monitors. <i>Sensors</i> , 2017 , 17,	3.8	56	

714	Resuspension of indoor aeroallergens and relationship to lung inflammation in asthmatic children. <i>Environment International</i> , 2010 , 36, 8-14	12.9	56
713	Multiple-year black carbon measurements and source apportionment using delta-C in Rochester, New York. <i>Journal of the Air and Waste Management Association</i> , 2012 , 62, 880-7	2.4	56
712	Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. <i>Journal of Aerosol Science</i> , 2017 , 105, 24-34	4.3	55
711	Carbonaceous PM(2.5) and secondary organic aerosol across the Veneto region (NE Italy). <i>Science of the Total Environment</i> , 2016 , 542, 172-81	10.2	55
710	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. <i>Atmospheric Environment</i> , 2015 , 123, 240-250	5.3	54
709	Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. <i>Aerosol Science and Technology</i> , 2007 , 41, 179-201	3.4	54
708	Source apportionment for ambient particles in the San Gorgonio wilderness. <i>Atmospheric Environment</i> , 2004 , 38, 5901-5910	5.3	54
707	Application of PLS and Back-Propagation Neural Networks for the estimation of soil properties. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2005 , 75, 23-30	3.8	54
706	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. <i>Environment International</i> , 2020 , 135, 105345	12.9	54
705	The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. <i>Annals of the American Thoracic Society</i> , 2019 , 16, 321-330	4.7	54
704	Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in Northern New York. <i>Environmental Science & Environmental & </i>	10.3	53
703	Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. <i>Building and Environment</i> , 2010 , 45, 330-337	6.5	53
702	Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM after the COVID-19 Outbreak. <i>Environmental Science & Environmental Sci</i>	10.3	53
701	Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City. <i>Atmospheric Environment</i> , 2017 , 148, 215-229	5.3	52
700	An Intercomparison of Measurement Methods for Carbonaceous Aerosol in the Ambient Air in New York City. <i>Aerosol Science and Technology</i> , 2006 , 40, 788-795	3.4	52
699	Seasonal variation of 2-methyltetrols in ambient air samples. <i>Environmental Science & Environmental &</i>	10.3	52
698	Identification of source nature and seasonal variations of Arctic aerosol by the multilinear engine. <i>Atmospheric Environment</i> , 1999 , 33, 2549-2562	5.3	52
697	Associations between Source-Specific Particulate Matter and Respiratory Infections in New York State Adults. <i>Environmental Science & Environmental Sc</i>	10.3	52

696	Temporal trends of polychlorinated biphenyls and organochlorine pesticides in Great Lakes fish, 1999-2009. <i>Science of the Total Environment</i> , 2012 , 439, 284-90	10.2	51
695	Development and Laboratory Testing of an Automated Monitor for the Measurement of Atmospheric Particle-Bound Reactive Oxygen Species (ROS). <i>Aerosol Science and Technology</i> , 2008 , 42, 629-635	3.4	51
694	Factor Analysis of Seattle Fine Particles. Aerosol Science and Technology, 2004, 38, 724-738	3.4	51
693	An introduction to receptor modeling. Chemometrics and Intelligent Laboratory Systems, 1991, 10, 21-43	3.8	50
692	Target transformation factor analysis as an aerosol mass apportionment method: A review and sensitivity study. <i>Atmospheric Environment</i> , 1988 , 22, 1777-1792		50
691	Source apportionment of size resolved particulate matter at a European air pollution hot spot. <i>Science of the Total Environment</i> , 2015 , 502, 172-83	10.2	49
690	Source apportionment of PM2.5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. <i>Atmospheric Environment</i> , 2014 , 98, 78-88	5.3	49
689	Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. <i>Science of the Total Environment</i> , 2009 , 407, 5071-84	10.2	49
688	Source identification of volatile organic compounds in Houston, Texas. <i>Environmental Science & Environmental </i>	10.3	49
687	Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. <i>Atmospheric Environment</i> , 2003 , 37, 5009-5021	5.3	49
686	Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 3573-3594	4.4	48
685	Ambient mercury sources in Rochester, NY: results from Principle Components Analysis (PCA) of Mercury Monitoring Network Data. <i>Environmental Science & Environmental Science </i>	10.3	48
684	Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. <i>Atmospheric Environment</i> , 2007 , 41, 6033-6047	5.3	48
683	Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. <i>Environment International</i> , 2019 , 126, 387-394	12.9	47
682	PCDD/F source apportionment in the Baltic Sea using positive matrix factorization. <i>Environmental Science & Environmental Scie</i>	10.3	47
681	Comparison of two trajectory based models for locating particle sources for two rural New York sites. <i>Atmospheric Environment</i> , 2004 , 38, 1955-1963	5.3	47
68o	Multitechnique screening of Chicago municipal sewage sludge for mutagenic activity. <i>Environmental Science & Environmental Sci</i>	10.3	47
679	Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. <i>Environmental Research</i> , 2017 , 154, 352-361	7.9	46

678	Urban air quality in a mid-size city IPM2.5 composition, sources and identification of impact areas: From local to long range contributions. <i>Atmospheric Research</i> , 2017 , 186, 51-62	5.4	46
677	Cardiopulmonary mortality and COPD attributed to ambient ozone. <i>Environmental Research</i> , 2017 , 152, 336-341	7.9	46
676	Source identifications of airborne fine particles using positive matrix factorization and U.S. Environmental Protection Agency positive matrix factorization. <i>Journal of the Air and Waste Management Association</i> , 2007 , 57, 811-9	2.4	46
675	Advanced factor analysis of spatial distributions of PM2.5 in the eastern United States. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	46
674	A System to Measure the Hygroscopicity of Aerosol Particles. <i>Aerosol Science and Technology</i> , 1992 , 17, 25-35	3.4	46
673	Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. <i>Science of the Total Environment</i> , 2016 , 573, 894-905	10.2	46
672	Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010 2015. <i>Atmospheric Environment</i> , 2018 , 187, 163-173	5.3	46
671	LongEange transport of soil dust and smoke pollution in the South Asian region. <i>Atmospheric Pollution Research</i> , 2011 , 2, 151-157	4.5	45
670	A chamber study of secondary organic aerosol formation by linalool ozonolysis. <i>Atmospheric Environment</i> , 2009 , 43, 3935-3940	5.3	45
669	Fibrous particle deposition in human nasal passage: The influence of particle length, flow rate, and geometry of nasal airway. <i>Journal of Aerosol Science</i> , 2008 , 39, 1040-1054	4.3	45
668	Source identification of fine particles in Washington, DC, by expanded factor analysis modeling. <i>Environmental Science & Environmental Science & Envi</i>	10.3	45
667	Receptor modeling of airborne ionic species collected in SCAQS. <i>Atmospheric Environment</i> , 1994 , 28, 1447-1470	5.3	45
666	Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. <i>Environmental Research</i> , 2017 , 156, 320-325	7.9	44
665	Mortality and morbidity due to ambient air pollution in Iran. <i>Clinical Epidemiology and Global Health</i> , 2019 , 7, 222-227	1.8	44
664	Air pollution and health: bridging the gap from sources to health outcomes: conference summary. <i>Air Quality, Atmosphere and Health</i> , 2012 , 5, 9-62	5.6	44
663	Source apportionment and potential source locations of PM2.5 and PM2.5 and residential sites in metropolitan Bangkok. <i>Atmospheric Pollution Research</i> , 2011 , 2, 172-181	4.5	44
662	Positive matrix factorization applied to a curve resolution problem. <i>Journal of Chemometrics</i> , 1998 , 12, 357-364	1.6	44
661	The Use of Principal Component Factor Analysis to Interpret Particulate Compositional Data Sets. Journal of the Air Pollution Control Association, 1982, 32, 637-642		44

660	Urban-scale Spatial-temporal Variability of Black Carbon and Winter Residential Wood Combustion Particles. <i>Aerosol and Air Quality Research</i> , 2011 , 11, 473-481	4.6	44	
659	Organic and Black Carbon in PM2.5 at an Urban Site at Dhaka, Bangladesh. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1062-1072	4.6	44	
658	A Letter about the Airborne Transmission of SARS-CoV-2 Based on the Current Evidence. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 911-914	4.6	44	
657	Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015: Are Concentrations Still Decreasing?. <i>Environmental Science & Environmental Sci</i>	10.3	43	
656	Mortality and morbidity for cardiopulmonary diseases attributed to PM exposure in the metropolis of Rome, Italy. <i>European Journal of Internal Medicine</i> , 2018 , 57, 49-57	3.9	43	
655	Quantification of Indoor Air Pollution from Using Cookstoves and Estimation of Its Health Effects on Adult Women in Northwest Bangladesh. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 463-475	4.6	43	
654	Classification of single particles by neural networks based on the computer-controlled scanning electron microscopy data. <i>Analytica Chimica Acta</i> , 1997 , 348, 375-388	6.6	43	
653	Source apportionment of time and size resolved ambient particulate matter measured with a rotating DRUM impactor. <i>Atmospheric Environment</i> , 2007 , 41, 5921-5933	5.3	43	
652	Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. <i>Aerosol Science and Technology</i> , 2006 , 40, 811-826	3.4	43	
651	Source identification for fine aerosols in Mammoth Cave National Park. <i>Atmospheric Research</i> , 2006 , 80, 309-322	5.4	43	
650	Composition of the Finnish Arctic aerosol: collection and analysis of historic filter samples. <i>Atmospheric Environment</i> , 2003 , 37, 2355-2364	5.3	43	
649	Assessment of the exposure to and dose from radon decay products in normally occupied homes. <i>Environmental Science & Environmental Science & Environm</i>	10.3	43	
648	Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. <i>Analytica Chimica Acta</i> , 1993 , 277, 369-380	6.6	43	
647	PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. <i>Science of the Total Environment</i> , 2020 , 744, 140984	10.2	43	
646	Nature and Sources of Ionic Species in Precipitation across the Indo-Gangetic Plains, India. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 943-957	4.6	43	
645	Changes in the acute response of respiratory diseases to PM in New York State from 2005 to 2016. <i>Science of the Total Environment</i> , 2019 , 677, 328-339	10.2	42	
644	Triggering of cardiovascular hospital admissions by fine particle concentrations in New York state: Before, during, and after implementation of multiple environmental policies and a recession. <i>Environmental Pollution</i> , 2018 , 242, 1404-1416	9.3	42	
643	US EPA particulate matter research centers: summary of research results for 2005\(\mathbb{Q}\)011. Air Quality, Atmosphere and Health, 2013, 6, 333-355	5.6	42	

642	Wet deposition of mercury at a New York state rural site: Concentrations, fluxes, and source areas. <i>Atmospheric Environment</i> , 2007 , 41, 4337-4348	5.3	42
641	Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 431-43	2.4	42
640	Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models. <i>Atmospheric Environment</i> , 2004 , 38, 5353-5361	5.3	42
639	Hygroscopic Growth of Assorted Indoor Aerosols. <i>Aerosol Science and Technology</i> , 1996 , 24, 151-160	3.4	42
638	Airborne particle classification with a combination of chemical composition and shape index utilizing an adaptive resonance artificial neural network. <i>Environmental Science & Environmental Science </i>	10.3	42
637	COVID-19 pandemic in Wuhan: Ambient air quality and the relationships between criteria air pollutants and meteorological variables before, during, and after lockdown. <i>Atmospheric Research</i> , 2021 , 250, 105362	5.4	42
636	Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. <i>Atmospheric Environment</i> , 2007 , 41, 4084-4096	5.3	41
635	Resolution of multicomponent peaks by orthogonal projection approach, positive matrix factorization and alternating least squares. <i>Analytica Chimica Acta</i> , 2000 , 411, 145-155	6.6	41
634	Factors affecting pollutant concentrations in the near-road environment. <i>Atmospheric Environment</i> , 2015 , 115, 223-235	5.3	40
633	Development of a realistic human airway model. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2012 , 226, 197-207	1.7	40
632	Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. <i>Atmospheric Pollution Research</i> , 2011 , 2, 190-196	4.5	40
631	On-road exposure to highway aerosols. 2. Exposures of aged, compromised rats. <i>Inhalation Toxicology</i> , 2004 , 16 Suppl 1, 41-53	2.7	40
630	Microenvironmental air quality impact of a commercial-scale biomass heating system. <i>Environmental Pollution</i> , 2017 , 220, 1112-1120	9.3	39
629	Seasonal trends and spatial variations of PM10-bounded polycyclic aromatic hydrocarbons in Veneto Region, Northeast Italy. <i>Atmospheric Environment</i> , 2013 , 79, 811-821	5.3	39
628	Atmospheric aerosol over Finnish Arctic: source analysis by the multilinear engine and the potential source contribution function. <i>Atmospheric Environment</i> , 2003 , 37, 4381-4392	5.3	39
627	Quantification of ATOFMS data by multivariate methods. <i>Analytical Chemistry</i> , 2001 , 73, 3535-41	7.8	39
626	Error estimates for factor loadings and scores obtained with target transformation factor analysis. <i>Analytica Chimica Acta</i> , 1981 , 132, 89-97	6.6	39
625	Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. <i>Atmospheric Environment</i> 2015 108 140-150	5.3	38

624	Deposition of Particles in a Chamber as a Function of Ventilation Rate. <i>Aerosol Science and Technology</i> , 1997 , 27, 62-72	3.4	38
623	Estimation of Mortality and Hospital Admissions Attributed to Criteria Air Pollutants in Tehran Metropolis, Iran (2013\(\textit{Q016} \)). <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2474-2481	4.6	38
622	Transport and deposition of ellipsoidal fibers in low Reynolds number flows. <i>Journal of Aerosol Science</i> , 2012 , 45, 1-18	4.3	37
621	Mercury temporal trends in top predator fish of the Laurentian Great Lakes. <i>Ecotoxicology</i> , 2011 , 20, 1568-76	2.9	37
620	Spatial distribution of source locations for particulate nitrate and sulfate in the upper-midwestern United States. <i>Atmospheric Environment</i> , 2007 , 41, 1831-1847	5.3	37
619	Experimental study of ion-induced nucleation by radon decay. <i>Journal of Chemical Physics</i> , 1993 , 99, 997	' <u>3</u> .9978	837
618	Analysis of major air pollutants and submicron particles in New York City and Long Island. <i>Atmospheric Environment</i> , 2017 , 148, 203-214	5.3	36
617	Additive impacts on particle emissions from heating low emitting cooking oils. <i>Atmospheric Environment</i> , 2013 , 74, 194-198	5.3	36
616	Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model. <i>Science of the Total Environment</i> , 2013 , 443, 375-86	10.2	36
615	Residential-Scale Biomass Boiler Emissions and Efficiency Characterization for Several Fuels. <i>Energy & Emp; Fuels</i> , 2013 , 27, 4840-4849	4.1	36
614	Emission Characterization and Efficiency Measurements of High-Efficiency Wood Boilers. <i>Energy & Emp; Fuels</i> , 2011 , 25, 5015-5021	4.1	36
613	Characterization of fine particle sources in the Great Smoky Mountains area. <i>Science of the Total Environment</i> , 2006 , 368, 781-94	10.2	36
612	Sample-specific standard error of prediction for partial least squares regression. <i>TrAC - Trends in Analytical Chemistry</i> , 2003 , 22, 330-334	14.6	36
611	The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions. <i>Atmospheric Environment</i> , 1996 , 30, 1147-1157	5.3	36
610	Classification of Individual Particles Based on Computer-Controlled Scanning Electron Microscopy Data. <i>Aerosol Science and Technology</i> , 1988 , 9, 133-151	3.4	36
609	Effects of trace gases and water vapor on the diffusion coefficient of polonium-218. <i>Science</i> , 1981 , 211, 480-1	33.3	36
608	Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. <i>Environmental Pollution</i> , 2018 , 234, 145-154	9.3	36
607	Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. <i>Bioresource Technology</i> , 2012 , 125, 52-8	11	35

606	Spatial and vertical extent of nucleation events in the Midwestern USA: insights from the Nucleation In ForesTs (NIFTy) experiment. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1641-1657	6.8	35
605	An evaluation of direct measurement techniques for mercury dry deposition. <i>Science of the Total Environment</i> , 2011 , 409, 1320-7	10.2	35
604	Locations and preferred pathways of possible sources of Arctic aerosol. <i>Atmospheric Environment</i> , 1999 , 33, 2229-2239	5.3	35
603	Solving the Chemical Mass Balance Problem Using an Artificial Neural Network. <i>Environmental Science & Environmental &</i>	10.3	35
602	Interlaboratory comparison of Receptor Model results for Houston aerosol. <i>Atmospheric Environment</i> , 1984 , 18, 1555-1566		35
601	Comparison of weighted and unweighted target transformation rotations in factor analysis. <i>Computers & Chemistry</i> , 1981 , 5, 1-7		35
600	Presence of SARS-CoV-2 in the air of public places and transportation. <i>Atmospheric Pollution Research</i> , 2021 , 12, 302-306	4.5	35
599	Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2327-2341	6.8	34
598	Spatial and temporal variability of black carbon in New York City. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		34
597	Use of electrostatic collection of 218Po for measuring Rn. <i>Health Physics</i> , 1989 , 57, 39-42	2.3	34
596	Sources of humic-like substances (HULIS) in PM in Beijing: Receptor modeling approach. <i>Science of the Total Environment</i> , 2019 , 671, 765-775	10.2	33
595	A targeted/non-targeted screening method for perfluoroalkyl carboxylic acids and sulfonates in whole fish using quadrupole time-of-flight mass spectrometry and MS(e). <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1471-80	4.4	33
594	Source apportionment of fine particles utilizing partially speciated carbonaceous aerosol data at two rural locations in New York State. <i>Atmospheric Environment</i> , 2007 , 41, 7923-7939	5.3	33
593	Assessment of trends and present ambient concentrations of PM2.2 and PM10 in Dhaka, Bangladesh. <i>Air Quality, Atmosphere and Health</i> , 2008 , 1, 125-133	5.6	33
592	Source Apportionment of Air Particulate Matter by Chemical Mass Balance (CMB) and Comparison with Positive Matrix Factorization (PMF) Model. <i>Aerosol and Air Quality Research</i> , 2007 , 7, 446-468	4.6	33
591	Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy). <i>Atmospheric Environment</i> , 2015 , 117, 19-31	5.3	32
590	Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. <i>Environmental Monitoring and Assessment</i> , 2016 , 188, 574	3.1	32
589	Indoor and outdoor concentrations of BTEX and formaldehyde in Tehran, Iran: effects of building characteristics and health risk assessment. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 274	123- 1 74	3 ³²

588	Hourly land-use regression models based on low-cost PM monitor data. <i>Environmental Research</i> , 2018 , 167, 7-14	7.9	32
587	Forty-seven years of weekly atmospheric black carbon measurements in the Finnish Arctic: Decrease in black carbon with declining emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 7667-7683	4.4	32
586	Baltimore Supersite: Highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses. <i>Atmospheric Environment</i> , 2006 , 40, 224-	2 5 7	32
585	Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh. <i>Science of the Total Environment</i> , 2006 , 358, 36-45	10.2	32
584	Target transformation factor analysis. Chemometrics and Intelligent Laboratory Systems, 1989, 6, 7-19	3.8	32
583	Atmospheric Mercury Temporal Trends in the Northeastern United States from 1992 to 2014: Are Measured Concentrations Responding to Decreasing Regional Emissions?. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 91-97	11	31
582	Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 9515-9529	5.1	31
581	VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air. <i>Energy & Enels</i> , 2015 , 29,	4.1	31
580	Chronic obstructive pulmonary diseases related to outdoor PM, O, SO, and NO in a heavily polluted megacity of Iran. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 17726-17734	5.1	31
579	Comprehensive Emerging Chemical Discovery: Novel Polyfluorinated Compounds in Lake Michigan Trout. <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 9460-8	10.3	31
578	Advanced receptor modeling of nearflealflime, ambient PM 2.5 and its associated components collected at an urbanfindustrial site in Toronto, Ontario. <i>Atmospheric Pollution Research</i> , 2014 , 5, 13-23	4.5	31
577	Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study. <i>Atmospheric Environment</i> , 2012 , 63, 117-124	5.3	31
576	Mercury (Hg) emissions from domestic biomass combustion for space heating. <i>Chemosphere</i> , 2011 , 84, 1694-9	8.4	31
575	Characterization of products formed in the reaction of ozone with alpha-pinene: case for organic peroxides. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 966-74		31
574	Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry. <i>Journal of Geophysical Research</i> , 2007 , 112,		31
573	Variable selection in classification of environmental soil samples for partial least square and neural network models. <i>Analytica Chimica Acta</i> , 2001 , 446, 231-242	6.6	31
572	Possible Sources for Some Trace Elements Found in Airborne Particles and Precipitation in Dorset, Ontario. <i>Journal of the Air and Waste Management Association</i> , 1996 , 46, 1035-1047	2.4	31
57 ¹	Reference data sets for chemometrical methods testing. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1993 , 19, 35-41	3.8	31

57°	Fantasia program for target transformation factor analysis to apportion sources in environmental samples. <i>Computers & Chemistry</i> , 1983 , 7, 149-155		31
569	Long Term Black Carbon Measurements at Two Urban Locations in New York. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 1181-1196	4.6	31
568	Air pollution at Rochester, NY: Long-term trends and multivariate analysis of upwind SO source impacts. <i>Science of the Total Environment</i> , 2018 , 612, 1506-1515	10.2	30
567	Deployment-Associated Exposure Surveillance With High-Resolution Metabolomics. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S12-21	2	30
566	Pollution concentrations in Delhi India during winter 2015 16: A case study of an odd-even vehicle strategy. <i>Atmospheric Pollution Research</i> , 2018 , 9, 1137-1145	4.5	30
565	TEM study of geogas-transported nanoparticles from the Fankou leaddinc deposit, Guangdong Province, South China. <i>Journal of Geochemical Exploration</i> , 2013 , 128, 124-135	3.8	30
564	Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. <i>Journal of Atmospheric Chemistry</i> , 2017 , 74, 423-450	3.2	30
563	Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke. <i>Aerosol Science and Technology</i> , 2012 , 46, 191-197	3.4	30
562	Source Apportionment of the Atmospheric Aerosol in Lahore, Pakistan. <i>Water, Air, and Soil Pollution</i> , 2010 , 208, 43-57	2.6	30
561	Source apportionment and spatial distributions of coarse particles during the Regional Air Pollution Study. <i>Environmental Science & Environmental Sci</i>	10.3	30
560	Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh. <i>Journal of the Air and Waste Management Association</i> , 2005 , 55, 227-40	2.4	30
559	Atmospheric aerosol over Alaska: 1. Spatial and seasonal variability. <i>Journal of Geophysical Research</i> , 1998 , 103, 19035-19044		30
558	Combining chemical and meteorological data to infer source areas of airborne pollutants. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1993 , 19, 187-199	3.8	30
557	Source Apportionment of Winter Submicron Prague Aerosols from Combined Particle Number Size Distribution and Gaseous Composition Data. <i>Aerosol and Air Quality Research</i> , 2009 , 9, 209-236	4.6	30
556	Comprehensive Analysis of the Great Lakes Top Predator Fish for Novel Halogenated Organic Contaminants by GCLC-HR-ToF Mass Spectrometry. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	29
555	Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 3701-3715	6.8	29
554	Risk of morbidity attributed to ambient PM10 in the western cities of Iran. <i>Toxin Reviews</i> , 2018 , 37, 313-	· 3 138	29
553	Observations of ambient trace gas and PM10 concentrations at Patna, Central Ganga Basin during 2013 2014: The influence of meteorological variables on atmospheric pollutants. <i>Atmospheric</i>	5.4	29

(2007-2016)

552	Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city "New Delhi," India. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 8781-93	5.1	29
551	Heterogeneity of coarse particles in an urban area. <i>Environmental Science & Environmental Science & E</i>	10.3	29
550	Designing ambient particulate matter monitoring program for source apportionment study by receptor modeling. <i>Atmospheric Environment</i> , 2009 , 43, 3334-3344	5.3	29
549	Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites. <i>Atmospheric Environment</i> , 2004 , 38, 5247-5256	5.3	29
548	Characterization of PM Using Multiple Site Data in a Heavily Industrialized Region of Turkey. <i>Aerosol and Air Quality Research</i> , 2015 , 15, 11-27	4.6	29
547	An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. <i>Environmental Research</i> , 2021 , 195, 110898	7.9	29
546	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. <i>Environmental Science & Environmental Scienc</i>	10.3	29
545	A controlled study for the characterization of PM2.5 emitted during grilling ground beef meat. Journal of Aerosol Science, 2017 , 103, 132-140	4.3	28
544	Wood combustion, a dominant source of winter aerosol in residential district in proximity to a large automobile factory in Central Europe. <i>Atmospheric Environment</i> , 2015 , 113, 98-107	5.3	28
543	Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system. <i>Journal of Toxicology</i> , 2011 , 2011, 419476	3.1	28
542	Contemporary threats and air pollution. Atmospheric Environment, 2009, 43, 87-93	5.3	28
541	Effects of outdoor air pollutants on platelet activation in people with type 2 diabetes. <i>Inhalation Toxicology</i> , 2012 , 24, 831-8	2.7	28
540	Comparison between sample-species specific uncertainties and estimated uncertainties for the source apportionment of the speciation trends network data. <i>Atmospheric Environment</i> , 2007 , 41, 567-5	575 ³	28
539	An Automated, Semicontinuous System for Measuring Indoor Radon Progeny Activity-Weighted Size Distributions, d p: 0.5800 nm. <i>Aerosol Science and Technology</i> , 1991 , 14, 82-92	3.4	28
538	Multivariate analysis of CCSEM auto emission data. <i>Science of the Total Environment</i> , 1987 , 59, 141-155	10.2	28
537	Source Apportionment of the El Paso Aerosol by Particle Class Balance Analysis. <i>Aerosol Science and Technology</i> , 1988 , 9, 221-235	3.4	28
536	Indoor concentrations of VOCs in beauty salons; association with cosmetic practices and health risk assessment. <i>Journal of Occupational Medicine and Toxicology</i> , 2018 , 13, 30	2.7	28
535	Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS). <i>Atmospheric Environment</i> , 2007 , 41, 8205-8218	5.3	27

534	Improving source apportionment of fine particles in the eastern United States utilizing temperature-resolved carbon fractions. <i>Journal of the Air and Waste Management Association</i> , 2005 , 55, 1456-63	2.4	27
533	Identification of sources of pollutants in precipitation measured at the mid-Atlantic US coast using potential source contribution function (PSCF). <i>Atmospheric Environment</i> , 2001 , 35, 3979-3986	5.3	27
532	Beta Gauge for Aerosol Mass Measurement. Aerosol Science and Technology, 2001, 35, 840-843	3.4	27
531	Hygroscopicity of Diesel Aerosols. Water, Air, and Soil Pollution, 1999, 112, 247-257	2.6	27
530	Assessment of wire and tube penetration theories using a 218PoOx cluster aerosol. <i>Journal of Aerosol Science</i> , 1990 , 21, 203-211	4.3	27
529	Target-Transformation Factor Analysis of Airborne Particulate Samples Selected by Wind-Trajectory Analysis. <i>Aerosol Science and Technology</i> , 1988 , 8, 63-80	3.4	27
528	Spatial and Temporal Trends of Short-Term Health Impacts of PM2.5 in Iranian Cities; a Modelling Approach (2013-2016). <i>Aerosol and Air Quality Research</i> , 2018 , 18, 497-504	4.6	27
527	A long-term source apportionment of PM2.5 in New York State during 2005\(\textit{0}\)1016. Atmospheric Environment, 2018 , 192, 35-47	5.3	27
526	A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises. <i>Atmospheric Environment</i> , 2015 , 119, 35-44	5.3	26
525	Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States. <i>Science of the Total Environment</i> , 2018 , 633, 59-70	10.2	26
524	Pilot Metabolome-Wide Association Study of Benzo(a)pyrene in Serum From Military Personnel. Journal of Occupational and Environmental Medicine, 2016 , 58, S44-52	2	26
523	Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain. <i>Atmospheric Research</i> , 2016 , 178-179, 393-400	5.4	26
522	Using a photochemical model to assess the horizontal, vertical and time distribution of PM(2.5) in a complex area: relationships between the regional and local sources and the meteorological conditions. <i>Science of the Total Environment</i> , 2013 , 443, 681-91	10.2	26
521	Characterization of Emissions from Grass Pellet Combustion. <i>Energy & Dels</i> , 2013 , 27, 5298-5306	4.1	26
520	Long-term characterization of indoor and outdoor ultrafine particles at a commercial building. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	26
519	Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. <i>Journal of the Air and Waste Management Association</i> , 2007 , 57, 190-203	2.4	26
518	Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. <i>Atmospheric Environment</i> , 2018 , 173, 277-288	5.3	26
517	Chemical nature and molecular weight distribution of the water-soluble fine and ultrafine PM fractions collected in a rural environment. <i>Atmospheric Environment</i> , 2012 , 59, 264-271	5.3	25

(2019-2005)

particles by partial least squares and positive matrix factorization. <i>Journal of Geophysical Research</i> , 2005 , 110,		25	
Source Apportionment Study of Nitrogen Species Measured in Southern California in 1987. <i>Journal of Environmental Engineering, ASCE</i> , 1996 , 122, 183-190	2	25	
A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. <i>Journal of Chemometrics</i> , 1992 , 6, 65-83	1.6	25	
The application of factor analysis to source apportionment of aerosol mass. <i>AIHA Journal</i> , 1982 , 43, 314	4-318	25	
The paredon, Mexico, obsidian source and early formative exchange. <i>Science</i> , 1978 , 201, 807-9	33.3	25	
Levels in 119, 121, 123Te. <i>Nuclear Physics A</i> , 1970 , 146, 182-192	1.3	25	
Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. <i>Atmospheric Pollution Research</i> , 2016 , 7, 808-816	4.5	24	
Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. <i>Environmental Science and Pollution Research</i> , 2011 , 19, 2942-50	5.1	24	
The Impact of Deliquescence and pH on Cr Speciation in Ambient PM Samples. <i>Aerosol Science and Technology</i> , 2012 , 46, 690-696	3.4	24	
Toxaphene trends in the Great Lakes fish. <i>Journal of Great Lakes Research</i> , 2012 , 38, 31-38	3	24	
Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. <i>Atmospheric Pollution Research</i> , 2011 , 2, 207-212	4.5	24	
The use of source apportionment for air quality management and health assessments. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2008 , 71, 555-63	3.2	24	
Comparison of source apportionments of fine particulate matter at two San Jose speciation trends network sites. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 1287-300	2.4	24	
Origins of fine aerosol mass in the western United States using positive matrix factorization. <i>Journal of Geophysical Research</i> , 2003 , 108,		24	
Predicting bulk ambient aerosol compositions from ATOFMS data with ART-2a and multivariate analysis. <i>Analytica Chimica Acta</i> , 2005 , 549, 179-187	6.6	24	
Calibration transfer as a data reconstruction problem. <i>Analytica Chimica Acta</i> , 1999 , 384, 193-205	6.6	24	
Calibration transfer as a data reconstruction problem. <i>Analytica Chimica Acta</i> , 1999 , 384, 193-205 Nanometer and ultrafine aerosols from radon radiolysis. <i>Journal of Aerosol Science</i> , 1993 , 24, 393-407	6.6	24	
	A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. Journal of Chemometrics, 1992, 6, 65-83 The application of factor analysis to source apportionment of aerosol mass. AlHA Journal, 1982, 43, 31: The paredon, Mexico, obsidian source and early formative exchange. Science, 1978, 201, 807-9 Levels in 119, 121, 123Te. Nuclear Physics A, 1970, 146, 182-192 Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 2016, 7, 808-816 Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environmental Science and Pollution Research, 2011, 19, 2942-50 The Impact of Deliquescence and pH on Cr Speciation in Ambient PM Samples. Aerosol Science and Technology, 2012, 46, 690-696 Toxaphene trends in the Great Lakes fish. Journal of Great Lakes Research, 2012, 38, 31-38 Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmospheric Pollution Research, 2011, 2, 207-212 The use of source apportionment for air quality management and health assessments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 555-63 Comparison of source apportionments of fine particulate matter at two San Jose speciation trends network sites. Journal of the Air and Waste Management Association, 2006, 56, 1287-300 Origins of fine aerosol mass in the western United States using positive matrix factorization. Journal of Geophysical Research, 2003, 108, Predicting bulk ambient aerosol compositions from ATOFMS data with ART-2a and multivariate	A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. Journal of Chemometrics, 1992, 6, 65-83 The application of factor analysis to source apportionment of aerosol mass. AlHA Journal, 1982, 43, 314-318 The paredon, Mexico, obsidian source and early formative exchange. Science, 1978, 201, 807-9 33.3 Levels in 119, 121, 123Te. Nuclear Physics A, 1970, 146, 182-192 1.3 Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 2016, 7, 808-816 Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environmental Science and Pollution Research, 2011, 19, 2942-50 The Impact of Deliquescence and pH on Cr Speciation in Ambient PM Samples. Aerosol Science and Technology, 2012, 46, 690-696 Toxaphene trends in the Great Lakes fish. Journal of Great Lakes Research, 2012, 38, 31-38 Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmospheric Pollution Research, 2011, 2, 207-212 The use of source apportionment for air quality management and health assessments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 555-63 Comparison of source apportionments of fine particulate matter at two San Jose speciation trends network sites. Journal of the Air and Waste Management Association, 2006, 56, 1287-300 Origins of fine aerosol mass in the western United States using positive matrix factorization. Journal of Geophysical Research, 2003, 108,	A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. Journal of Chemometrics, 1992, 6, 65-83 The application of factor analysis to source apportionment of aerosol mass. AIHA Journal, 1982, 43, 314-318 25 The paredon, Mexico, obsidian source and early formative exchange. Science, 1978, 201, 807-9 33-3 25 Levels in 119, 121, 123Te. Nuclear Physics A, 1970, 146, 182-192 1.3 25 Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 2016, 7, 808-816 Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environmental Science and Pollution Research, 2011, 19, 2942-50 The Impact of Deliquescence and pH on Cr Speciation in Ambient PM Samples. Aerosol Science and Technology, 2012, 46, 690-696 Toxaphene trends in the Great Lakes fish. Journal of Great Lakes Research, 2012, 38, 31-38 3 24 Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmospheric Pollution Research, 2011, 2, 207-212 The use of source apportionment for air quality management and health assessments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 555-63 Comparison of source apportionments of fine particulate matter at two San Jose speciation trends network sites. Journal of the Air and Waste Management Association, 2006, 56, 1287-300 Origins of fine aerosol mass in the western United States using positive matrix factorization. Journal of Geophysical Research, 2003, 108,

498	Size segregated PM and its chemical composition emitted from heated corn oil. <i>Environmental Research</i> , 2017 , 154, 101-108	7.9	23
497	Comparison of two cluster analysis methods using single particle mass spectra. <i>Atmospheric Environment</i> , 2008 , 42, 881-892	5.3	23
496	Key Scientific Findings and Policy- and Health-Relevant Insights from the U.S. Environmental Protection Agency Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 3-92		23
495	Concentration and Sources of PM10 and its Constituents in Alsasua, Spain. <i>Water, Air, and Soil Pollution</i> , 2006 , 174, 385-404	2.6	23
494	Total potential source contribution function analysis of trace elements determined in aerosol samples collected near Lake Huron. <i>Environmental Science & Environmental Scienc</i>	10.3	23
493	Kohonen neural network as a pattern recognition method based on the weight interpretation. <i>Analytica Chimica Acta</i> , 1996 , 334, 57-66	6.6	23
492	Turbulent deposition of submicron particles on rough walls. <i>Journal of Aerosol Science</i> , 1985 , 16, 81-86	4.3	23
491	Chemical Characteristics of PM2.5 during a 2016 Winter Haze Episode in Shijiazhuang, China. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 368-380	4.6	23
490	Evaluation of receptor and chemical transport models for PM10 source apportionment. <i>Atmospheric Environment: X</i> , 2020 , 5, 100053	2.8	23
489	Speciation of organic fractions does matter for aerosol source apportionment. Part 3: Combining off-line and on-line measurements. <i>Science of the Total Environment</i> , 2019 , 690, 944-955	10.2	22
488	Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data. <i>Analytica Chimica Acta</i> , 2001 , 446, 327-341	6.6	22
487	Characterization of uncertainty and variability in residential radon cancer risks. <i>Annals of the New York Academy of Sciences</i> , 1999 , 895, 245-72	6.5	22
486	Environmental policy analysis: modeling atmospheric particulate matter. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	22
485	Analysis of fly ash produced from combustion of refuse-derived fuel and coal mixtures. <i>Environmental Science & Environmental </i>	10.3	22
484	Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories. <i>Environmental Pollution</i> , 2020 , 266, 115268	9.3	22
483	Source apportionment analyses for fine (PM2.5) and coarse (PM2.5¶0) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. <i>Atmospheric Pollution Research</i> , 2016 , 7, 843-8	3 5 47 ⁵	22
482	Long-term trends (2005 2 016) of source apportioned PM2.5 across New York State. <i>Atmospheric Environment</i> , 2019 , 201, 110-120	5.3	22
481	Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter. Environmental Science and Technology Letters, 2018, 5, 405-412	11	22

(1995-2015)

480	Application of positive matrix factorization to source apportionment of surface water quality of the Daliao River basin, northeast China. <i>Environmental Monitoring and Assessment</i> , 2015 , 187, 80	3.1	21
479	Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. <i>Atmospheric Pollution Research</i> , 2016 , 7, 671-679	4.5	21
478	Characterization and heterogeneity of coarse particles across an urban area. <i>Atmospheric Environment</i> , 2012 , 46, 449-459	5.3	21
477	Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1036-45	2.4	21
476	Atmospheric black carbon in PM2.5 in Indonesian cities. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1022-5	2.4	21
475	Effect of the shutdown of a large coal-fired power plant on ambient mercury species. <i>Chemosphere</i> , 2013 , 92, 360-7	8.4	21
474	Application of receptor modeling methods. Atmospheric Pollution Research, 2011, 2, 122-125	4.5	21
473	Vaporgas/liquid nucleation experiments: A review of the challenges. <i>Journal of Aerosol Science</i> , 2009 , 40, 733-746	4.3	21
472	Condensation Activation and Nucleation on Heterogeneous Aerosol Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9147-9157	3.4	21
471	Chemical and physical analyses of Houston aerosol for interlaboratory comparison of source apportionment procedures. <i>Atmospheric Environment</i> , 1984 , 18, 1539-1553		21
470	Constraining the factor analytical solutions obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. <i>Atmospheric Environment</i> , 2015 , 108, 151-157	5.3	20
469	Cr speciation changes in the presence of ozone and reactive oxygen species at low relative humidity. <i>Atmospheric Environment</i> , 2013 , 71, 92-94	5.3	20
468	Exposures to Carbon Monoxide from Off-Gassing of Bulk Stored Wood Pellets. <i>Energy & amp; Fuels</i> , 2015 , 29, 218-226	4.1	20
467	A tenDear source apportionment study of ambient fine particulate matter in San Jose, California. <i>Atmospheric Pollution Research</i> , 2013 , 4, 398-404	4.5	20
466	Fiber Classification and the Influence of Average Air Humidity. <i>Aerosol Science and Technology</i> , 2005 , 39, 1056-1063	3.4	20
465	Mining airborne particulate size distribution data by positive matrix factorization. <i>Journal of Geophysical Research</i> , 2005 , 110,		20
464	Identification of Fine Particle Sources in Mid-Atlantic US Area. <i>Water, Air, and Soil Pollution</i> , 2005 , 168, 391-421	2.6	20
463	The use of bootstrapping to estimate conditional probability fields for source locations of airborne pollutants. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1995 , 30, 69-79	3.8	20

462	A study on the potential sources of air pollutants observed at TjEn, Sweden. <i>Environmental Science and Pollution Research</i> , 1995 , 2, 107-15	5.1	20
461	The initial atmospheric behavior of radon decay products. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 1996 , 203, 353-375	1.5	20
460	Projection of Prim's minimal spanning tree into a Kohonen neural network for identification of airborne particle sources by their multielement trace patterns. <i>Analytica Chimica Acta</i> , 1994 , 291, 1-18	6.6	20
459	Methodological study applying three-mode factor analysis to three-way chemical data sets. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1990 , 7, 237-250	3.8	20
458	Ambient Air Quality in Dhaka Bangladesh over Two Decades: Impacts of Policy on Air Quality. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 1910-1920	4.6	20
457	Spatial-temporal variations of summertime ozone concentrations across a metropolitan area using a network of low-cost monitors to develop 24 hourly land-use regression models. <i>Science of the Total Environment</i> , 2019 , 654, 1167-1178	10.2	20
456	Age-Corrected Trends and Toxic Equivalence of PCDD/F and CP-PCBs in Lake Trout and Walleye from the Great Lakes: 2004-2014. <i>Environmental Science & Environmental Science & E</i>	10.3	20
455	Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach. <i>Atmospheric Environment</i> , 2015 , 122, 477-483	5.3	19
454	Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling. <i>Environmental Pollution</i> , 2018 , 237, 348-355	9.3	19
453	Polychlorinated biphenyls and organochlorine pesticides concentration patterns and trends in top predator fish of Laurentian Great Lakes from 1999 to 2014. <i>Journal of Great Lakes Research</i> , 2018 , 44, 716-724	3	19
452	MicroRNAs as Novel Biomarkers of Deployment Status and Exposure to Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S89-9	6 ²	19
451	Introduction to Department of Defense Research on Burn Pits, Biomarkers, and Health Outcomes Related to Deployment in Iraq and Afghanistan. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S3-S11	2	19
450	PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6496-508	5.1	19
449	Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: a unified Bayesian approach. <i>Biostatistics</i> , 2014 , 15, 484-97	3.7	19
448	Temporal variations and sources of Eastern Mediterranean aerosols based on a 9-year observation. <i>Atmospheric Environment</i> , 2012 , 61, 463-475	5.3	19
447	Seasonal variations of elemental carbon in urban aerosols as measured by two common thermal-optical carbon methods. <i>Science of the Total Environment</i> , 2009 , 407, 5176-83	10.2	19
446	A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2007 , 17, 549-58	6.7	19
445	Characterization of fine aerosol and its inorganic components at two rural locations in New York State. <i>Environmental Monitoring and Assessment</i> , 2008 , 144, 351-66	3.1	19

444	Source Investigation for Ambient PM 2.5 in Indianapolis, IN. <i>Aerosol Science and Technology</i> , 2006 , 40, 898-909	3.4	19
443	Performance Comparison of Scanning Electrical Mobility Spectrometers. <i>Aerosol Science and Technology</i> , 2007 , 41, 360-368	3.4	19
442	Real-Time Characterization of the Composition of Individual Particles Emitted From Ultrafine Particle Concentrators. <i>Aerosol Science and Technology</i> , 2006 , 40, 437-455	3.4	19
441	Utilizing wind direction and wind speed as independent variables in multilinear receptor modeling studies. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2002 , 60, 25-41	3.8	19
440	n-PentanolEelium homogeneous nucleation rates. <i>Journal of Chemical Physics</i> , 2000 , 113, 1971-1975	3.9	19
439	Relationship of phase diagrams and surfaces of new phase nucleation rates. <i>Journal of Chemical Physics</i> , 1998 , 109, 1435-1444	3.9	19
438	The measurement of activity-weighted size distributions of radon progeny: methods and laboratory intercomparison studies. <i>Health Physics</i> , 1992 , 63, 560-70	2.3	19
437	Exploration of multivariate chemical data by projection pursuit. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1992 , 16, 45-59	3.8	19
436	Investigation on the use of chemical mass balance receptor model: Numerical computations. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1986 , 1, 33-44	3.8	19
435	Multi-element Analysis and Characterization of Atmospheric Particulate Pollution in Dhaka. <i>Aerosol and Air Quality Research</i> , 2006 , 6, 334-359	4.6	19
434	Triggering of ST-elevation myocardial infarction by ambient wood smoke and other particulate and gaseous pollutants. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2017 , 27, 198-206	6.7	18
433	Legacy Polybrominated Diphenyl Ethers (PBDEs) Trends in Top Predator Fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will Concentrations Continue to Decrease?. <i>Environmental Science & Environmental Science & En</i>	10.3	18
432	Study of the carbonaceous aerosol and morphological analysis of fine particles along with their mixing state in Delhi, India: a case study. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10744-	5 ⁵ 7 ¹	18
431	Spatial and temporal variations of the particulate size distribution and chemical composition over Ibadan, Nigeria. <i>Environmental Monitoring and Assessment</i> , 2015 , 187, 544	3.1	18
430	The discovery of the metallic particles of groundwater from the Dongshengmiao polymetallic deposit, Inner Mongolia, and their prospecting significance. <i>Journal of Geochemical Exploration</i> , 2016 , 161, 49-61	3.8	18
429	Identification of Sources from Chemical Characterization of Fine Particulate Matter and Assessment of Ambient Air Quality in Dhaka, Bangladesh. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 118-128	4.6	18
428	Effect of the Shutdown of a Coal-Fired Power Plant on Urban Ultrafine Particles and Other Pollutants. <i>Aerosol Science and Technology</i> , 2011 , 45, 1245-1249	3.4	18
427	Experimental Assessment of the Short- and Long-Term Effects of 222Rn from Domestic Shower Water on the Dose Burden Incurred in Normally Occupied Homes. <i>Environmental Science & Environmental Science & Technology</i> , 1997 , 31, 1822-1829	10.3	18

426	Some thoughts on the "unattached" fraction of radon decay products. <i>Health Physics</i> , 1992 , 63, 209-12	2.3	18
425	Size Distribution Measurements of Ultrafine Aerosols, d p > 1.8 nm, Formed by Radiolysis in a Diameter Measurement Analyzer Aerosol Charger. <i>Aerosol Science and Technology</i> , 1990 , 13, 394-398	3.4	18
424	Solubility of radon in selected perfluorocarbon compounds and water. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 356-359	3.9	18
423	Comparison of the mutagenicity of sewage sludges. <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the Comparison of the mutagenicity of sewage sludges</i> . <i>Environmental Science & Comparison of the Compariso</i>	10.3	18
422	An improved constant output atomizer. AIHA Journal, 1982, 43, 135-136		18
421	Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 1939-1949	4.6	18
420	Hybrid multiple-site mass closure and source apportionment of PM and aerosol acidity at major cities in the Po Valley. <i>Science of the Total Environment</i> , 2020 , 704, 135287	10.2	18
419	Mechanistic Pathway of Carbon Monoxide Off-Gassing from Wood Pellets. <i>Energy & amp; Fuels</i> , 2016 , 30, 5809-5815	4.1	18
418	Assessing the PM impact of biomass combustion in megacity Dhaka, Bangladesh. <i>Environmental Pollution</i> , 2020 , 264, 114798	9.3	17
417	Ambient Ammonia Concentrations Across New York State. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8287-8302	4.4	17
416	Source apportionment of time- and size-resolved ambient particulate matter. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2013 , 129, 15-20	3.8	17
415	Reconciling trajectory ensemble receptor model results with emissions. <i>Environmental Science</i> & amp; Technology, 2005 , 39, 7980-3	10.3	17
414	Measured summertime concentrations of particulate components, Hg0, and speciated polycyclic aromatic hydrocarbons at rural sites in New York State. <i>Environmental Pollution</i> , 2003 , 123, 413-25	9.3	17
413	Comparison of Experimental and Theoretical Heterogeneous Nucleation on Ultrafine Carbon Particles. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13813-22	3.4	17
412	Evaluation of Continuous and Filter-Based Methods for Measuring PM2.5 Mass Concentration. <i>Aerosol Science and Technology</i> , 2005 , 39, 290-303	3.4	17
411	The initial behavior of 218Po in indoor air. <i>Environment International</i> , 1989 , 15, 299-308	12.9	17
410	Anaomalous Arsenic Concentrations in Chautauqua Lake. <i>Environmental Letters</i> , 1973 , 5, 45-51		17
409	Changes in the hospitalization and ED visit rates for respiratory diseases associated with source-specific PM in New York State from 2005 to 2016. <i>Environmental Research</i> , 2020 , 181, 108912	7.9	17

408	PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. <i>Atmospheric Research</i> , 2020 , 237, 104833	5.4	17	
407	Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. <i>Science of the Total Environment</i> , 2018 , 637-638, 943-953	10.2	17	
406	Characteristics of absorbing aerosols during winter foggy period over the National Capital Region of Delhi: Impact of planetary boundary layer dynamics and solar radiation flux. <i>Atmospheric Research</i> , 2017 , 188, 1-10	5.4	16	
405	Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. <i>Atmosphere</i> , 2019 , 10, 27	2.7	16	
404	It is time to drop principal components analysis as a Eleceptor model [] <i>Journal of Atmospheric Chemistry</i> , 2015 , 72, 127-128	3.2	16	
403	Measurement and Modeling of Carbon Monoxide Emission Rates from Multiple Wood Pellet Types. <i>Energy & Energy & </i>	4.1	16	
402	Detection of Serum microRNAs From Department of Defense Serum Repository: Correlation With Cotinine, Cytokine, and Polycyclic Aromatic Hydrocarbon Levels. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S62-71	2	16	
401	The PM2.5 chemical composition in an industrial zone included in a large urban settlement: main sources and local background. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 1913-22	4.3	16	
400	Characterization and source identification of airborne particulate loadings at receptor site-classes of Lagos Mega-City, Nigeria. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1026-35	2.4	16	
399	Urban-Scale Seasonal and Spatial Variability of Ultrafine Particle Number Concentrations. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 2223-2235	2.6	16	
398	Particulate matter source apportionment in a village situated in industrial region of Central Europe. Journal of the Air and Waste Management Association, 2013 , 63, 1412-21	2.4	16	
397	Long-term trends of biogenic sulfur aerosol and its relationship with sea surface temperature in Arctic Finland. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 11,770-11,776	4.4	16	
396	Dynamic Model for Assessing 222Rn and Progeny Exposure from Showering with Radon-Bearing Water. <i>Environmental Science & Environmental Science & Envir</i>	10.3	16	
395	The chemical mass balance as a multivariate calibration problem. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1997 , 37, 5-14	3.8	16	
394	Development and evaluation of a particle-bound reactive oxygen species generator. <i>Journal of Aerosol Science</i> , 2008 , 39, 168-174	4.3	16	
393	Source characterization of ambient fine particles in the Los Angeles basin. <i>Journal of Environmental Engineering and Science</i> , 2007 , 6, 343-353	0.8	16	
392	The complexities of air pollution regulation: the need for an integrated research and regulatory perspective. <i>Toxicological Sciences</i> , 2007 , 100, 318-27	4.4	16	
391	An ion chromatographic analysis of water-soluble, short-chain organic acids in ambient particulate matter. <i>International Journal of Environmental Analytical Chemistry</i> , 2006 , 86, 767-777	1.8	16	

390	Cluster analysis of single particle mass spectra measured at Flushing, NY. <i>Analytica Chimica Acta</i> , 2006 , 555, 47-56	6.6	16
389	Enhanced airborne polychlorinated biphenyl (PCB) concentrations and chlorination downwind of Lake Ontario. <i>Environmental Science & Enhanced</i> , 2001, 35, 3280-6	10.3	16
388	Pattern Recognition of Soil Samples Based on the Microbial Fatty Acid Contents. <i>Environmental Science & Environmental Science</i>	10.3	16
387	An adaptive resonance theory based artificial neural network (ART-2a) for rapid identification of airborne particle shapes from their scanning electron microscopy images. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1994 , 25, 367-387	3.8	16
386	Comparison of the source locations and seasonal patterns for acidic species in precipitation and ambient particles in Southern Ontario, Canada. <i>Science of the Total Environment</i> , 1994 , 143, 245-260	10.2	16
385	Multiple site receptor modeling with a minimal spanning tree combined with a neural network. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16
384	Efficacy of air cleaning systems in controlling indoor radon decay products. <i>Health Physics</i> , 1991 , 61, 78	5 <i>2</i> 97	16
383	A comparison of R- and Q-modes in target transformation factor analysis for resolving environmental data. <i>Atmospheric Environment</i> , 1984 , 18, 345-352		16
382	Multiparticle configurations in the odd-neutron nuclei Ni61 and Zn67 populated by decay of Cu61, Cu67, and Ga67. <i>Physical Review C</i> , 1978 , 17, 1822-1831	2.7	16
381	Radioactive Decay of Im130, Ig130, and Cs130 to Levels of Xe130. <i>Physical Review C</i> , 1973 , 8, 745-756	2.7	16
380	Elemental and magnetic analyses, source identification, and oxidative potential of airborne, passive, and street dust particles in Asaluyeh County, Iran. <i>Science of the Total Environment</i> , 2020 , 707, 136132	10.2	16
379	Does total antioxidant capacity modify adverse cardiac responses associated with ambient ultrafine, accumulation mode, and fine particles in patients undergoing cardiac rehabilitation?. <i>Environmental Research</i> , 2016 , 149, 15-22	7.9	16
378	Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. <i>Science of the Total Environment</i> , 2021 , 759, 143548	10.2	16
377	Daily land use regression estimated woodsmoke and traffic pollution concentrations and the triggering of ST-elevation myocardial infarction: a case-crossover study. <i>Air Quality, Atmosphere and Health</i> , 2018 , 11, 239-244	5.6	15
376	Airborne Dioxins, Furans, and Polycyclic Aromatic Hydrocarbons Exposure to Military Personnel in Iraq. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S22-30	2	15
375	Comparative health risk assessment of in-vehicle exposure to formaldehyde and acetaldehyde for taxi drivers and passengers: Effects of zone, fuel, refueling, vehicle's age and model. <i>Environmental Pollution</i> , 2019 , 254, 112943	9.3	15
374	Long-term particle measurements in Finnish Arctic: Part I IChemical composition and trace metal solubility. <i>Atmospheric Environment</i> , 2014 , 88, 275-284	5.3	15
373	Estimation of local and external contributions of biomass burning to PM in an industrial zone included in a large urban settlement. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 2100-2115	5.1	15

372	Characterization of fine particulate sources at Ashaiman in Greater Accra, Ghana. <i>Atmospheric Pollution Research</i> , 2012 , 3, 301-310	4.5	15	
371	Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 72-7	2.4	15	
370	Experimental Studies of Heterogeneous Nucleation in the Turbulent Mixing Condensation Nuclei Counter. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 4558-4564	3.4	15	
369	Identification of markers for chemical mass balance receptor model. <i>Atmospheric Environment</i> , 1989 , 23, 1373-1384		15	
368	The use of constrained least-squares to solve the chemical mass balance problem. <i>Atmospheric Environment</i> , 1989 , 23, 2143-2150		15	
367	Radiolytic condensation nuclei in aerosol neutralizers. <i>Journal of Aerosol Science</i> , 1983 , 14, 23-27	4.3	15	
366	Effects of PM and gases exposure during prenatal and early-life on autism-like phenotypes in male rat offspring. <i>Particle and Fibre Toxicology</i> , 2020 , 17, 8	8.4	15	
365	Evaluation of a Modified Receptor Model for Solving Multiple Time Resolution Equations: A Simulation Study. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 1253-1262	4.6	15	
364	Ambient mercury source identification at a New York State urban site: Rochester, NY. <i>Science of the Total Environment</i> , 2019 , 650, 1327-1337	10.2	15	
363	Forecasting PM concentration using artificial neural network and its health effects in Ahvaz, Iran. <i>Chemosphere</i> , 2021 , 283, 131285	8.4	15	
362	Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. <i>Science of the Total Environment</i> , 2019 , 676, 564-576	10.2	14	
361	Study of Carbon-Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China. <i>Resource Geology</i> , 2015 , 65, 13-26	1	14	
360	Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans in Microliter Samples of Human Serum as Exposure Indicators. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S72-9	2	14	
359	Determinants on ambient PM2.5 infiltration in non-heating season for urban residences in Beijing: Building characteristics, interior surface coverings and human behavior. <i>Atmospheric Pollution Research</i> , 2015 , 6, 1046-1054	4.5	14	
358	Toxaphene analysis in Great Lakes fish: a comparison of GC-EI/MS/MS and GC-ECNI-MS, individual congener standard and technical mixture for quantification of toxaphene. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 395, 457-63	4.4	14	
357	Equation-oriented system: an efficient programming approach to solve multilinear and polynomial equations by the conjugate gradient algorithm. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2001 , 55, 13-22	3.8	14	
356	Evaluation of the Effectiveness of Several Air Cleaners for Reducing the Hazard from Indoor Radon Progeny. <i>Aerosol Science and Technology</i> , 1993 , 19, 268-278	3.4	14	
355	Classification of airborne particles by analytical scanning electron microscopy imaging and a modified Kohonen neural network (3MAP). <i>Analytica Chimica Acta</i> , 1995 , 310, 1-14	6.6	14	

354	Source apportionment with site specific source profiles. <i>Journal of the Air and Waste Management Association</i> , 1991 , 41, 294-305		14
353	Identification and characterization of 3.8 min 134ml. <i>Nuclear Physics A</i> , 1972 , 179, 689-700	1.3	14
352	Is Alaska Truly the Great Escape from Air Pollution? Long Term Source Apportionment of Fine Particulate Matter in Fairbanks, Alaska. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 1875-1882	4.6	14
351	Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2. <i>Asian Journal of Atmospheric Environment</i> , 2011 , 5, 86-96	1.3	14
350	Exposure to airborne particulate matter in the ambient, indoor, and occupational environments. <i>Clinics in Occupational and Environmental Medicine</i> , 2006 , 5, 747-71		14
349	Persistent high PM pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. <i>Environmental Research</i> , 2021 , 198, 111186	7.9	14
348	Effect of adding variables on rotational ambiguity in positive matrix factorization solutions. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2017 , 162, 198-202	3.8	13
347	Investigating the effect of several factors on concentrations of bioaerosols in a well-ventilated hospital environment. <i>Environmental Monitoring and Assessment</i> , 2019 , 191, 407	3.1	13
346	Potential sources and meteorological factors affecting PM-bound polycyclic aromatic hydrocarbon levels in six main cities of northeastern Italy: an assessment of the related carcinogenic and mutagenic risks. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 31987-32000	5.1	13
345	Improved atmospheric sampling of hexavalent chromium. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1313-23	2.4	13
344	Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity. <i>Environmental Science & Environmental Science</i>	10.3	13
343	Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 321-331	2.4	13
342	Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis. <i>Journal of the Air and Waste</i>	2.4	13
341	Management Association, 2008 , 58, 357-68 Study of urban atmospheric pollution in Navarre (Northern Spain). <i>Environmental Monitoring and Assessment</i> , 2007 , 134, 137-51	3.1	13
340	Sources of fine particle lead, bromine, and elemental carbon in southeastern Australia. <i>Science of the Total Environment</i> , 1995 , 175, 65-79	10.2	13
339	Evaluation of spatial patterns of fine particle sulfur and lead concentrations in New South Wales, Australia. <i>Atmospheric Environment</i> , 1996 , 30, 9-24	5.3	13
338	Determination of heavy metals in the Rock River (Illinois) through the analysis of sediments. Journal of Radioanalytical and Nuclear Chemistry, 1991 , 148, 319-337	1.5	13
337	Evaluation of the expert system shells EX-TRAN and TIMM as rule-building tools for classification purposes. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1988 , 3, 199-204	3.8	13

336	THE USE OF FACTOR ANALYSIS IN SOURCE DETERMINATION OF PARTICULATE EMISSIONS. Particulate Science and Technology, 1983 , 1, 183-192	2	13	
335	SOURCE IDENTIFICATION AND RESOLUTION THROUGH APPLICATION OF FACTOR AND CLUSTER ANALYSIS. <i>Annals of the New York Academy of Sciences</i> , 1980 , 338, 103-115	6.5	13	
334	The decay of 195mPb and 197mPb. <i>Nuclear Physics A</i> , 1972 , 184, 497-506	1.3	13	
333	Ambient wintertime particulate air pollution and hypertensive disorders of pregnancy in Monroe County, New York. <i>Environmental Research</i> , 2019 , 168, 25-31	7.9	13	
332	Deposition of glass fibers in a physically realistic replica of the human respiratory tract. <i>Journal of Aerosol Science</i> , 2018 , 117, 149-163	4.3	13	
331	Cerebral ischemic attack, epilepsy and hospital admitted patients with types of headaches attributed to PM10 mass concentration in Abadan, Iran. <i>Aeolian Research</i> , 2019 , 41, 100541	3.9	12	
330	Improving apportionment of PM using multisite PMF by constraining G-values with a priori information. <i>Science of the Total Environment</i> , 2020 , 736, 139657	10.2	12	
329	Air quality study of Islamabad: preliminary results. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2012 , 293, 351-358	1.5	12	
328	Performance evaluation of continuous PM2.5 mass concentration monitors. <i>Journal of Aerosol Science</i> , 2005 , 36, 95-109	4.3	12	
327	Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 85-9	2.4	12	
326	Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles. <i>Atmospheric Research</i> , 2006 , 82, 591-604	5.4	12	
325	Measurements of Fine Particle Mass Concentrations Using Continuous and Integrated Monitors in Eastern US Cities. <i>Aerosol Science and Technology</i> , 2005 , 39, 261-275	3.4	12	
324	Measurement of SO2 effects on the 218Po ion mobility spectrum by alpha-track detection. <i>Health Physics</i> , 1992 , 62, 51-7	2.3	12	
323	Comparison of the target transformation factor analysis of coal composition data with x-ray diffraction analysis. <i>Analytica Chimica Acta</i> , 1984 , 160, 121-134	6.6	12	
322	A versatile and comprehensive analysis code for automated reduction of gamma-ray spectral data. <i>Computers & Chemistry</i> , 1977 , 1, 257-264		12	
321	Seasonal Characteristics of Water-Soluble Dicarboxylates Associated with PM10 in the Urban Atmosphere of Durg City, India. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 683-696	4.6	12	
320	Source Apportionment of Fine and Coarse Particulate Matter in Industrial Areas of Kaduna, Northern Nigeria. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1179-1190	4.6	12	
319	Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results. <i>Atmospheric Environment</i> , 2019 , 199, 224-232	5.3	12	

318	Occupational exposure of aldehydes resulting from the storage of wood pellets. <i>Journal of Occupational and Environmental Hygiene</i> , 2017 , 14, 417-426	2.9	11
317	Ambient black carbon particulate matter in the coal region of Dhanbad, India. <i>Science of the Total Environment</i> , 2018 , 615, 955-963	10.2	11
316	Source Apportionment of Airborne Dioxins, Furans, and Polycyclic Aromatic Hydrocarbons at a United States Forward Operating Air Base During the Iraq War. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S31-7	2	11
315	Commentary: Integrating non-targeted and targeted chemical screening in Great Lakes fish monitoring programs. <i>Journal of Great Lakes Research</i> , 2018 , 44, 1127-1135	3	11
314	Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800. <i>Journal of the Air and Waste Management Association</i> , 2014 , 64, 1439-45	2.4	11
313	Identification, Apportionment, and Photochemical Reactivity of Non-methane Hydrocarbon Sources in Busan, Korea. <i>Water, Air, and Soil Pollution</i> , 2011 , 215, 67-82	2.6	11
312	Using highly time resolved fine particulate compositions to find particle sources in St. Louis, MO. <i>Atmospheric Pollution Research</i> , 2011 , 2, 219-230	4.5	11
311	Modeling toxaphene behavior in the Great Lakes. Science of the Total Environment, 2011, 409, 792-9	10.2	11
310	Detection of radical species formed by the ozonolysis of pinene. <i>Journal of Atmospheric Chemistry</i> , 2010 , 66, 137-155	3.2	11
309	New Directions: Reactive Particles as a Source of Human Health Effects?. <i>Atmospheric Environment</i> , 2008 , 42, 3192-3194	5.3	11
308	Multilinear model for spatial pattern analysis of the Measurement of Haze and Visual Effects project. <i>Environmental Science & Environmental Science &</i>	10.3	11
307	Mixed multiway analysis of airborne particle composition data. <i>Journal of Chemometrics</i> , 1999 , 13, 343-3	3 5 26	11
306	Visual neural mapping technique for locating fine airborne particles sources. <i>Environmental Science</i> & amp; Technology, 1994 , 28, 1015-22	10.3	11
205			
305	A measurement system for Rn decay product lung deposition based on respiratory models. <i>Health Physics</i> , 1990 , 58, 291-5	2.3	11
304		2.3	11
	Physics, 1990, 58, 291-5 Trace element concentrations in summer aerosols at rural sites in New York state and their possible sources and seasonal variations in the composition of ambient sulfatecontaining aerosols in the	2.34.6	
304	Physics, 1990, 58, 291-5 Trace element concentrations in summer aerosols at rural sites in New York state and their possible sources and seasonal variations in the composition of ambient sulfatecontaining aerosols in the New York area. Atmospheric Environment, 1982, 16, 1279-1280 Positive Matrix Factorization of 47 Years of Particle Measurements in Finnish Arctic. Aerosol and Air Quality Research, 2015, 15, 188-207		11

(1990-2020)

300	Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM in Los Angeles, 2005 to 2016. <i>Environmental Research</i> , 2020 , 190, 109967	7.9	11
299	Economic analysis of a field monitored residential wood pellet boiler heating system in New York State. <i>Renewable Energy</i> , 2019 , 133, 500-511	8.1	11
298	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 409-429	6.8	10
297	Acute Changes in Ambient Temperature Are Associated With Adverse Changes in Cardiac Rhythm. <i>Air Quality, Atmosphere and Health</i> , 2014 , 7, 357-367	5.6	10
296	Characteristics of traffic-induced fugitive dust from unpaved roads. <i>Aerosol Science and Technology</i> , 2017 , 51, 1324-1331	3.4	10
295	Seasonal inhomogeneity of soot particles over the central Indo-Gangetic Plains, India: Influence of meteorology. <i>Journal of Meteorological Research</i> , 2015 , 29, 935-949	2.3	10
294	A new indicator of fireworks emissions in Rochester, New York. <i>Environmental Monitoring and Assessment</i> , 2012 , 184, 7293-7	3.1	10
293	Performance Evaluation of a Model Electrostatic Precipitator for an Advanced Wood Combustion System. <i>Energy & Energy & </i>	4.1	10
292	Carbonaceous aerosol at two rural locations in New York State: Characterization and behavior. Journal of Geophysical Research, 2008, 113,		10
291	Data mining of the relationship between volatile organic components and transient high ozone formation. <i>Analytica Chimica Acta</i> , 2003 , 490, 153-158	6.6	10
2 90	Two channel vapor nucleation in the vicinity of the triple point. <i>Journal of Chemical Physics</i> , 2001 , 114, 9852-9855	3.9	10
289	A Transition from Heterogeneous to Homogeneous Nucleation in the Turbulent Mixing CNC. <i>Aerosol Science and Technology</i> , 2001 , 35, 586-595	3.4	10
288	A System for Aerodynamically Sizing Ultrafine Radioactive Particles. <i>Aerosol Science and Technology</i> , 1995 , 23, 121-130	3.4	10
287	Use of Multiple Fractal Dimensions to Quantify Airborne Particle Shape. <i>Aerosol Science and Technology</i> , 1994 , 20, 161-168	3.4	10
286	Scanning Electron Microscopy. <i>Data Handling in Science and Technology</i> , 1991 , 149-212	2.7	10
285	Air Filtration and Radon Decay Product Mitigation. <i>Indoor Air</i> , 1992 , 2, 84-100	5.4	10
284	Comparison of particles taken from the ESP and plume of a coal-fired power plant with background aerosol particles. <i>Atmospheric Environment</i> , 1989 , 23, 81-84		10
283	Simulation Studies of Reconstruction Algorithms for the Determination of Optimum Operating Parameters and Resolution of Graded Screen Array Systems (Nonconventional Diffusion Batteries). <i>Aerosol Science and Technology</i> , 1990 , 12, 700-710	3.4	10

282	Distribution characteristics of trace elements and ionic species of aerosol collected at Canadian high arctic. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 2903-2909		10
281	Performance Evaluation of Two 25 kW Residential Wood Pellet Boiler Heating Systems. <i>Energy & Energy Fuels</i> , 2017 , 31, 12174-12182	4.1	9
2 80	Characteristics and geological significance of particles on fractures from the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, China. <i>Geochemistry: Exploration, Environment, Analysis</i> , 2015 , 15, 373-381	1.8	9
279	Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources. <i>Science of the Total Environment</i> , 2020 , 713, 136676	10.2	9
278	Thermal energy storage tank sizing for biomass boiler heating systems using process dynamic simulation. <i>Energy and Buildings</i> , 2018 , 175, 199-207	7	9
277	Mercury biomagnification and contemporary food web dynamics in lakes Superior and Huron. <i>Journal of Great Lakes Research</i> , 2015 , 41, 473-483	3	9
276	Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1046-57	2.4	9
275	A New Technique to Measure the Mobility Size of Ultrafine Radioactive Particles. <i>Aerosol Science and Technology</i> , 1997 , 27, 381-393	3.4	9
274	A fuzzy adaptive resonance theory upervised predictive mapping neural network applied to the classification of multivariate chemical data. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1998 , 41, 161-170	3.8	9
273	Binary N-octanolBulfur hexafluoride nucleation. <i>Journal of Chemical Physics</i> , 2001 , 115, 810-816	3.9	9
272	Estimation of the heteroscedastic noise in large data arrays. <i>Analytica Chimica Acta</i> , 2000 , 412, 177-184	6.6	9
271	Hygroscopic Growth of Consumer Spray Products. <i>Aerosol Science and Technology</i> , 1995 , 23, 331-340	3.4	9
270	Potential for Ion-induced Nucleation of Volatile Organic Compounds by Radon Decay in Indoor Environments. <i>Aerosol Science and Technology</i> , 1993 , 19, 80-93	3.4	9
269	Elemental source signatures of aerosols from the Canadian high Arctic. <i>Environmental Pollution</i> , 1992 , 75, 181-7	9.3	9
268	The use of sampling to cluster large data sets. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1990 , 8, 195-204	3.8	9
267	Production of ultrafine particles by radon radiolysis. <i>Journal of Aerosol Science</i> , 1988 , 19, 1323-1325	4.3	9
266	Implications of incomplete sampling on a statistical form of the ambient air quality standard for particulate matter. <i>Environmental Science & Environmental Science & Environ</i>	10.3	9
265	Estimation of the weight-dependent probability of detecting a mutagen with the Ames assay. <i>Environmental Mutagenesis</i> , 1980 , 2, 419-24		9

264	Determination of the sources of toxic elements in environmental particles using microscopic and statistical analysis techniques. <i>Environment International</i> , 1980 , 4, 453-461	12.9	9
263	The Application of Factor Analysis to Urban Aerosol Source Resolution. <i>ACS Symposium Series</i> , 1981 , 21	- 4 9 ₄	9
262	Error estimates for factor loadings and scores obtained by target transformation factor analysis. <i>Analytica Chimica Acta</i> , 1982 , 135, 379-380	6.6	9
261	Gamma-ray tables for neutron fast neutron and photon activation analysis. <i>Journal of Radioanalytical Chemistry</i> , 1975 , 24, 125-251		9
260	Assessment of Urban Air Quality in Indonesia. Aerosol and Air Quality Research, 2020, 20,	4.6	9
259	Letter to the Editor: Ending the Use of Obsolete Data Analysis Methods. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 688-689	4.6	9
258	Spring Festival and COVID-19 Lockdown: Disentangling PM Sources in Major Chinese Cities. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093403	4.9	9
257	Bayesian Spatial Multivariate Receptor Modeling for Multisite Multipollutant Data. <i>Technometrics</i> , 2018 , 60, 306-318	1.4	9
256	A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York. <i>Environmental Research</i> , 2017 , 156, 312-319	7.9	8
255	Chemometrics applied to environmental systems. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2015 , 149, 205-214	3.8	8
254	Combustion of Switchgrass in Biomass Home Heating Systems: Emissions and Ash Behavior. <i>Energy & Emp; Fuels</i> , 2016 , 30, 2958-2967	4.1	8
253	Short and long-term impacts of ambient ozone on health in Ahvaz, Iran. <i>Human and Ecological Risk Assessment (HERA)</i> , 2019 , 25, 1336-1351	4.9	8
252	The dark side of the tradition: the polluting effect of Epiphany folk fires in the eastern Po Valley (Italy). <i>Science of the Total Environment</i> , 2014 , 473-474, 549-64	10.2	8
251	Assessment of exposure to outdoor BTEX concentrations on the Saint Regis Mohawk Tribe reservation at Akwesasne New York State. <i>Air Quality, Atmosphere and Health</i> , 2013 , 6, 181-193	5.6	8
250	Source Identification of Chittagong Aerosol by Receptor Modeling. <i>Environmental Engineering Science</i> , 2009 , 26, 679-689	2	8
249	Polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDE) air concentrations in the Lake Ontario region: Trends and potential sources. <i>Atmospheric Environment</i> , 2010 , 44, 3173-3178	5.3	8
248	Particle Collection Characteristics of a Prototype Electrostatic Precipitator (ESP) for a Differential TEOM System. <i>Aerosol Science and Technology</i> , 2004 , 38, 46-51	3.4	8
247	Source Apportionment of Soil Samples by the Combination of Two Neural Networks Based on Computer-Controlled Scanning Electron Microscopy. <i>Journal of the Air and Waste Management Association</i> , 1999 , 49, 773-783	2.4	8

246	Hygroscopicity of consumer spray product aerosol particles. <i>Journal of Aerosol Science</i> , 1994 , 25, 1341-	134531	8
245	Reduction of mutagenicity of municipal wastewaters by land treatment. <i>Science of the Total Environment</i> , 1987 , 66, 193-202	10.2	8
244	Radon adsorption on activated carbon and the effect of some airborne contaminants. <i>Science of the Total Environment</i> , 1988 , 76, 193-202	10.2	8
243	The Initial Behaviour of 218Po in Indoor Air. <i>Radiation Protection Dosimetry</i> , 1988 , 24, 207-210	0.9	8
242	Evaporative mass losses from particle samples. <i>Journal of Aerosol Science</i> , 1983 , 14, 611-613	4.3	8
241	Identification of Sources of Fine Particulate Matter in Kandy, Sri Lanka. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 476-484	4.6	8
240	Evaluation and Field Calibration of a Low-Cost Ozone Monitor at a Regulatory Urban Monitoring Station. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 2029-2037	4.6	8
239	Airborne Particulate Pollution Measured in Bangladesh from 2014 to 2017. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 272-281	4.6	8
238	Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka. <i>Asian Journal of Atmospheric Environment</i> , 2011 , 5, 237-246	1.3	8
237	Nontargeted Discovery of Novel Contaminants in the Great Lakes Region: A Comparison of Fish Fillets and Fish Consumers. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
236	Chemical characteristics and sources of ambient PM in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. <i>Environmental Pollution</i> , 2021 , 268, 115926	9.3	8
235	Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM in an urban environment. <i>Science of the Total Environment</i> , 2021 , 761, 143225	10.2	8
234	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. <i>Aerosol and Air Quality Research</i> , 2021 , 21, 200567	4.6	8
233	E-Cigarettes and Cardiopulmonary Health. <i>Function</i> , 2021 , 2, zqab004	6.1	8
232	Triggering of myocardial infarction by increased ambient fine particle concentration: Effect modification by source direction. <i>Environmental Research</i> , 2015 , 142, 374-9	7.9	7
231	Light Absorption Properties of Organic Aerosol from Wood Pyrolysis: Measurement Method Comparison and Radiative Implications. <i>Environmental Science & Environmental Science &</i>	10.3	7
230	Traffic-related metrics and adverse birth outcomes: A systematic review and meta-analysis. <i>Environmental Research</i> , 2020 , 188, 109752	7.9	7
229	Ozone pollution in the west China rain zone and its adjacent regions, Southwestern China: Concentrations, ecological risk, and Sources. <i>Chemosphere</i> , 2020 , 256, 127008	8.4	7

228	Simulated airflow and rigid fiber behavior in a realistic nasal airway model. <i>Particulate Science and Technology</i> , 2018 , 36, 131-140	2	7
227	Do elevated blood levels of omega-3 fatty acids modify effects of particulate air pollutants on fibrinogen?. <i>Air Quality, Atmosphere and Health</i> , 2018 , 11, 791-799	5.6	7
226	Long-term particle measurements in Finnish Arctic: Part II Drend analysis and source location identification. <i>Atmospheric Environment</i> , 2014 , 88, 285-296	5.3	7
225	Quantitative results from single-particle characterization data. <i>Journal of Chemometrics</i> , 2008 , 22, 528	-5326	7
224	Nucleation Rate Surface Topologies for Binary Systems Journal of Physical Chemistry B, 2001, 105, 118	81 3. 418	32 7
223	Study of neutralization of 218 Po ions by small ion recombination in O2, Ar, and N2. <i>Health Physics</i> , 1991 , 61, 209-14	2.3	7
222	The application of three-mode factor analysis (TMFA) to receptor modeling of SCENES particle data. <i>Atmospheric Environment Part A General Topics</i> , 1992 , 26, 1701-1711		7
221	HO x production due to radon decay in air. <i>Journal of Atmospheric Chemistry</i> , 1993 , 17, 375-390	3.2	7
220	Investigations of Transported and Local Emissions on Particle Compositions in Korea. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 793-805	4.6	7
219	Understanding the Chemistry and Sources of Precipitation Ions in the mid-Brahmaputra Valley of Northeastern India. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 2690-2704	4.6	7
218	The effect of the decreasing level of Urmia Lake on particulate matter trends and attributed health effects in Tabriz, Iran. <i>Microchemical Journal</i> , 2020 , 153, 104434	4.8	7
217	Metal nanoparticles in the air: state of the art and future perspectives. <i>Environmental Science: Nano</i> , 2020 , 7, 3233-3254	7.1	7
216	Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2016 , 79, 287-98	3.2	7
215	Automated Isotopic Profile Deconvolution for High Resolution Mass Spectrometric Data (APGC-QToF) from Biological Matrices. <i>Analytical Chemistry</i> , 2019 , 91, 15509-15517	7.8	7
214	The detection of SARS-CoV-2 RNA in indoor air of dental clinics during the COVID-19 pandemic. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	7
213	Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning. <i>Environmental Pollution</i> , 2021 , 286, 117252	9.3	7
212	Air quality in Canadian port cities after regulation of low-sulphur marine fuel in the North American Emissions Control Area. <i>Science of the Total Environment</i> , 2021 , 791, 147949	10.2	7
211	Source apportionment of PM 2.5 size distribution and composition data from multiple stationary sites using a mobile platform. <i>Atmospheric Research</i> , 2017 , 190, 21-28	5.4	6

21 0	Exposure to particulate matter and gaseous pollutants during cab commuting in Nur-Sultan city of Kazakhstan. <i>Atmospheric Pollution Research</i> , 2020 , 11, 880-885	4.5	6
209	Source apportionment of benzene downwind of a major point source. <i>Atmospheric Pollution Research</i> , 2011 , 2, 138-143	4.5	6
208	Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 2008 , 269-284		6
207	Characterization of Ambient Fine Particles in the Northwestern Area and Anchorage, Alaska. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 1328-1340	2.4	6
206	The U.S. Environmental Protection Agency's Particulate Matter Supersites Program: an integrated synthesis of scientific findings and policy- and health-relevant insights. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, S1-2	2.4	6
205	A Special Issue of JA&WMA Supporting Key Scientific and Policy- and Health-Relevant Findings from EPA's Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 137-139	2.4	6
204	Analysis of source contributions to the ambient aerosol sample by simulated annealing. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1996 , 34, 275-281	3.8	6
203	Evaluation of several air cleaners for reducing indoor radon progeny. <i>Journal of Aerosol Science</i> , 1994 , 25, 395-405	4.3	6
202	Exploration of multivariate atmospheric particulate compositional data by projection pursuit. <i>Atmospheric Environment</i> , 1994 , 28, 1411-1424	5.3	6
201	Nanogram Determination of Indium Using Epithermal Neutrons and Its Application in Potential Source Contribution Function of Airborne Particulate Matter in the Arctic Aerosol. <i>Nuclear Science and Engineering</i> , 1992 , 110, 79-83	1.2	6
200	Induction of an Ultrafine Aerosol by Radon Radiolysis. ACS Symposium Series, 1987, 365-376	0.4	6
199	Chemometrics and distributed software. <i>Journal of Chemical Information and Computer Sciences</i> , 1985 , 25, 308-313		6
198	The reduction of airborne radon daughter concentration by plateout on an air mixing fan. <i>Health Physics</i> , 1979 , 36, 497-504	2.3	6
197	The effects of thermophoresis and diffusiophoresis on the collection of charged sub-th particles by charged droplets. <i>Atmospheric Environment</i> , 1983 , 17, 2533-2537		6
196	Decay of 205At. <i>Nuclear Physics A</i> , 1970 , 149, 63-64	1.3	6
195	Pt193 L-Electron-Capture Half-Life. <i>Physical Review C</i> , 1971 , 4, 606-606	2.7	6
194	A Chamber Study of Secondary Organic Aerosol (SOA) Formed by Ozonolysis of d-Limonene in the Presence of NO. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 59-68	4.6	6
193	Nontargeted Screening of Halogenated Organic Compounds in Fish Fillet Tissues from the Great Lakes. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 15035-15045	10.3	6

192	Application of image analysis method to detection and counting of glass fibers from filter samples. <i>Aerosol Science and Technology</i> , 2016 , 50, 353-362	3.4	6
191	Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1876-1886	4.2	6
190	Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S82-S89	2	6
189	Neurodegenerative hospital admissions and long-term exposure to ambient fine particle air pollution. <i>Annals of Epidemiology</i> , 2021 , 54, 79-86.e4	6.4	6
188	Changes in triggering of ST-elevation myocardial infarction by particulate air pollution in Monroe County, New York over time: a case-crossover study. <i>Environmental Health</i> , 2019 , 18, 82	6	5
187	Term birth weight and ambient air pollutant concentrations during pregnancy, among women living in Monroe County, New York. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2019 , 29, 500	o-579	5
186	Carbon Monoxide Off-Gassing From Bags of Wood Pellets. <i>Annals of Work Exposures and Health</i> , 2018 , 62, 248-252	2.4	5
185	Impact of percentile computation method on PM 24-h air quality standard. <i>Journal of Environmental Management</i> , 2012 , 107, 110-3	7.9	5
184	Spatial Measurements of Ultrafine Particles Using an Engine Exhaust Particle SizerTM within a Local Community Downwind of a Major International Trade Bridge in Buffalo, New York. <i>Aerosol Science and Technology</i> , 2010 , 44, 1096-1104	3.4	5
183	Sources of fine particulate species in ambient air over lake Champlain Basin, VT. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 1607-20	2.4	5
182	©eoaerosols⊡their origin, transport and paradoxical behavior: a challenge to aerosol science. Journal of Aerosol Science, 1999 , 30, S111-S112	4.3	5
181	SO2 Oxidation and H2O-H2SO4 Binary Nucleation by Radon Decay. <i>Aerosol Science and Technology</i> , 1995 , 23, 411-421	3.4	5
180	Hygroscopicity of indoor aerosols and its influence on the deposition of inhaled radon decay products. <i>Environment International</i> , 1996 , 22, 941-947	12.9	5
179	Electret method for continuous measurement of the concentration of radon in water. <i>Health Physics</i> , 1995 , 68, 110-4	2.3	5
178	An Introduction to Receptor Modeling. <i>Data Handling in Science and Technology</i> , 1991 , 1-10	2.7	5
177	The effects of measurement errors, collinearity and their interactions on aerosol source apportionment computations. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1988 , 4, 239-250	3.8	5
176	Collection of hydrophilic and hydrophobic charged submicron particles by charged water droplets. Journal of Aerosol Science, 1983 , 14, 703-712	4.3	5
175	Trace multielement analysis using high-flux fast-neutron activation. <i>Journal of Radioanalytical Chemistry</i> , 1981 , 63, 187-199		5

174	Factors Affecting the Collision of Aerosol Particles with Small Water Drops. <i>Aerosol Science and Technology</i> , 1982 , 2, 341-349	3.4	5
173	Differential Probability Functions for Investigating Long-term Changes in Local and Regional Air Pollution Sources. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 724-736	4.6	5
172	Extreme-value estimation applied to aerosol size distributions and related environmental problems. <i>Journal of Research of the National Institute of Standards and Technology</i> , 1994 , 99, 361	1.3	5
171	Estimation of Source Apportionment of Ambient PM2.5at Western Coastal IMPROVE Site in USA. Journal of Korean Society for Atmospheric Environment, 2008, 24, 30-42	1.5	5
170	A DFT screening of magnetic sensing-based adsorption of NO by M-MOF-74 (M= Mg, Ti, Fe and Zn). <i>Materials Chemistry and Physics</i> , 2020 , 239, 122105	4.4	5
169	Cardiovascular morbidity and mortality associations with biomass- and fossil-fuel-combustion fine-particulate-matter exposures in Dhaka, Bangladesh. <i>International Journal of Epidemiology</i> , 2021 , 50, 1172-1183	7.8	5
168	Why it makes sense that increased PM was correlated with anthropogenic combustion-derived water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
167	Trends (2005-2016) of perfluoroalkyl acids in top predator fish of the Laurentian Great Lakes. <i>Science of the Total Environment</i> , 2021 , 778, 146151	10.2	5
166	Metabolome-Wide Association Study of Deployment to Balad, Iraq or Bagram, Afghanistan. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S25-S34	2	5
165	Improved risk communications with a Bayesian multipollutant Air Quality Health Index. <i>Science of the Total Environment</i> , 2020 , 722, 137892	10.2	5
164	The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove. <i>Science of the Total Environment</i> , 2021 , 750, 141334	10.2	5
163	Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh. <i>Environmental Pollution</i> , 2021 , 290, 11807	3 9·3	5
162	Ambient and Controlled Particle Exposures as Triggers for Acute ECG Changes. <i>Research Report</i> (health Effects Institute), 2016 , 5-75	0.9	5
161	Applying Multivariate Curve Resolution to Source Apportionment of the Atmospheric Aerosol. <i>ACS Symposium Series</i> , 2015 , 129-157	0.4	4
160	Concentrations and Long-Term Temporal Trends of Hexabromocyclododecanes (HBCDD) in Lake Trout and Walleye from the Great Lakes. <i>Environmental Science & Environmental Science</i>	10.3	4
159	CYP1A1 gene polymorphisms modify the association between PM exposure and lung function. <i>Chemosphere</i> , 2018 , 203, 353-359	8.4	4
158	A conceptual model to understand the soluble and insoluble Cr species in deliquesced particles. <i>Air Quality, Atmosphere and Health</i> , 2019 , 12, 1091-1102	5.6	4
157	A chamber study of secondary organic aerosol formed by ozonolysis of pinene in the presence of nitric oxide. <i>Journal of Atmospheric Chemistry</i> , 2014 , 71, 21-32	3.2	4

156	Development of a new method to estimate the regional and local contributions to black carbon. <i>Atmospheric Environment</i> , 2011 , 45, 7681-7687	5.3	4	
155	Quantitative Analysis of Unique Deposition Pattern of Submicron Fe3O4 Particles Using Computer-Controlled Scanning Electron Microscopy. <i>Aerosol Science and Technology</i> , 2012 , 46, 905-912	3.4	4	
154	Projection of residential radon lung cancer risks: the Beir VI risk models. <i>Radiation Protection Dosimetry</i> , 2002 , 102, 371-3; author reply 373-4	0.9	4	
153	A prospective assessment of the 210Po surface collection for estimating 222Rn exposure. <i>Journal of Environmental Radioactivity</i> , 2000 , 51, 79-98	2.4	4	
152	The Mixture Resolution Problem Applied to Airborne Particle Source Apportionment. <i>Handbook of Environmental Chemistry</i> , 1995 , 47-86	0.8	4	
151	Analysis of the performance of a radon mitigation system based on charcoal beds. <i>Environmental Technology (United Kingdom)</i> , 1993 , 14, 401-412	2.6	4	
150	Neutralization of thoron progeny in gases. <i>Health Physics</i> , 1994 , 67, 155-61	2.3	4	
149	Analysis of the genotoxicity of municipal sewage sludge extracts with sister chromatid exchange in cultured human lymphocytes. <i>Water, Air, and Soil Pollution</i> , 1988 , 42, 117	2.6	4	
148	Summary of an APCA Specialty Meeting. Journal of the Air Pollution Control Association, 1983, 33, 302-30	03	4	
147	The use of chemometrics in apportionment of air pollution sources. <i>TrAC - Trends in Analytical Chemistry</i> , 1985 , 4, 104-106	14.6	4	
146	Gamma-ray tables for neutron, fast-neutron and photon activation analysis. <i>Journal of Radioanalytical Chemistry</i> , 1975 , 25, 303-428		4	
145	The application of multivariate analysis for interpretation of the chemical and physical analysis of lake sediments. <i>Journal of Environmental Science and Health Part A, Environmental Science and Engineering</i> , 1976 , 11, 367-383		4	
144	Isotope separator on-line at the Princeton-Pennsylvania accelerator. <i>Nuclear Instruments & Methods</i> , 1970 , 84, 237-243		4	
143	Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China <i>Environment International</i> , 2022 , 158, 1069	9 73 9	4	
142	Analysis of Beta Attenuation Monitor Filter Rolls for Particulate Matter Speciation. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 14-23	4.6	4	
141	CRITICAL EMBRYO SIZES AT THE CONDITIONS OF SPINODAL DECOMPOSITIONS. <i>Journal of Aerosol Science</i> , 2001 , 32, 17-18	4.3	4	
140	Evaluation of urban ozone in the Brahmaputra River Valley. <i>Atmospheric Pollution Research</i> , 2020 ,	4.5	4	
	11, 610-618			

138	Decadal Differences in Emerging Halogenated Contaminant Profiles in Great Lakes Top Predator Fish. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 14352-14360	10.3	4	
137	Integrative Network Analysis Linking Clinical Outcomes With Environmental Exposures and Molecular Variations in Service Personnel Deployed to Balad and Bagram. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S65-S72	2	4	
136	Multiple Air Quality Monitoring Evidence of the Impacts of Large-scale Social Restrictions during the COVID-19 Pandemic in Jakarta, Indonesia. <i>Aerosol and Air Quality Research</i> , 2021 , 21, 200645	4.6	4	
135	Airborne particulate matter in Tehran's ambient air. <i>Journal of Environmental Health Science & Engineering</i> , 2021 , 19, 1179-1191	2.9	4	
134	A procedure to evaluate the factors determining the elemental composition of PM. Case study: the Veneto region (northeastern Italy). <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3823-3839	5.1	4	
133	Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF). <i>Atmospheric Environment</i> , 2021 , 259, 118503	5.3	4	
132	Bioaccumulation of perfluoroalkyl substances in a Lake Ontario food web. <i>Journal of Great Lakes Research</i> , 2021 ,	3	4	
131	Estimating uncertainties of source contributions to PM using moving window evolving dispersion normalized PMF. <i>Environmental Pollution</i> , 2021 , 286, 117576	9.3	4	
130	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 3067-3096	6.8	4	
129	Assessment of Methods for the Measurement of Wood Fuel Compositions. <i>Energy & amp; Fuels</i> , 2017 , 31, 5215-5221	4.1	3	
128	Simulation of Point Source Pollutant Dispersion Pattern: An Investigation of Effects of Prevailing Local Weather Conditions. <i>Earth Systems and Environment</i> , 2019 , 3, 215-230	7.5	3	
127	The Aitken counter: Revisiting its design and performance characteristics. <i>Aerosol Science and Technology</i> , 2020 , 54, 999-1006	3.4	3	
126	PM10 source identification using the trajectory based potential source apportionment (TraPSA) toolkit at Kochi, India. <i>Atmospheric Pollution Research</i> , 2020 , 11, 1535-1542	4.5	3	
125	Continuous Ozonolysis Process To Produce Non-CO Off-Gassing Wood Pellets. <i>Energy & amp; Fuels</i> , 2017 , 31, 8228-8234	4.1	3	
124	A spectral similarity measure using Bayesian statistics. <i>Analytica Chimica Acta</i> , 2009 , 635, 157-61	6.6	3	
123	Chapter 1 Theory and Application of Atmospheric Source Apportionment. <i>Developments in Environmental Science</i> , 2009 , 9, 1-33		3	
122	Discussion of Bensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations by YuanXun Zhang, Rebecca J. Sheesley, Min-Suk Bae and James J. Schauer. <i>Atmospheric Environment</i> , 2010 , 44, 1138-1138	5.3	3	
121	Electrical mobility and size distribution of aged 212Pb nanometer carriers in nitrogen gas. <i>Journal of Aerosol Science</i> , 1997 , 28, 1465-1477	4.3	3	

(2020-2005)

120	Comparison between Back-Trajectory Based Modeling and Lagrangian Backward Dispersion Modeling for Locating Sources of Reactive Gaseous Mercury <i>Environmental Science & Eamp; Technology</i> , 2005 , 39, 3887-3888	10.3	3	
119	New convergence criterion for multi-variable curve resolution. <i>Analytica Chimica Acta</i> , 2003 , 495, 195-2	. 08. 6	3	
118	Natural radiation environment VI. Environment International, 1996, 22, 1-2	12.9	3	
117	Use of Chain Code Histogram Method to Quantify Airborne Particle Shapes. <i>Aerosol Science and Technology</i> , 1994 , 21, 210-218	3.4	3	
116	Super micro computing with the DSI-32 board. <i>TrAC - Trends in Analytical Chemistry</i> , 1986 , 5, 204-205	14.6	3	
115	Recent improvements to fantasia, a target transformation factor analysis program. <i>Computers & Chemistry</i> , 1986 , 10, 163-164		3	
114	The Indoor Radon Problem Explained for the Layman. ACS Symposium Series, 1987, 572-586	0.4	3	
113	An introduction to supercomputers. <i>TrAC - Trends in Analytical Chemistry</i> , 1987 , 6, 1-2	14.6	3	
112	The interpretation of multielemental INAA data using pattern recognition methods. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 1987 , 112, 215-222	1.5	3	
111	Investigation of the geographical distribution of female cancer patterns in Belgium using pattern recognition techniques. <i>International Journal of Epidemiology</i> , 1988 , 17, 724-31	7.8	3	
110	Procedures for multielement analysis using high-flux fast-neutron activation. <i>Journal of Radioanalytical Chemistry</i> , 1982 , 72, 183-194		3	
109	The use of instrumental neutron activation analysis for the determination of arsenic concentrations in poultry. <i>Journal of Radioanalytical Chemistry</i> , 1975 , 25, 299-302		3	
108	Half-Life Variations of I131 Samples. <i>Physical Review C</i> , 1971 , 3, 1699-1701	2.7	3	
107	Source apportionment of particle number concentrations: A global review <i>Science of the Total Environment</i> , 2022 , 819, 153104	10.2	3	
106	Bioaccumulation of polyfluoroalkyl substances in the Lake Huron aquatic food web <i>Science of the Total Environment</i> , 2022 , 819, 152974	10.2	3	
105	Effect of short-term exposure to air pollution on COVID-19 mortality and morbidity in Iranian cities. Journal of Environmental Health Science & Engineering, 2021, 19, 1-10	2.9	3	
104	Measurement of Activity-Weighted Size Distributions of Radon Decay Products in a Normally Occupied Home. <i>Radiation Protection Dosimetry</i> , 1992 , 45, 329-331	0.9	3	
103	Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. <i>Atmospheric Pollution Research</i> , 2020 , 11, 2215-2225	4.5	3	

102	A systematic review and meta-analysis of human biomonitoring studies on exposure to environmental pollutants in Iran. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 212, 111986	7	3
101	Environmental Chemicals Altered in Association With Deployment for High Risk Areas. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S15-S24	2	3
100	Use of Biomarkers to Assess Environmental Exposures and Health Outcomes in Deployed Troops. Journal of Occupational and Environmental Medicine, 2019 , 61 Suppl 12, S1-S4	2	3
99	Mortality burden attributable to long-term ambient PM2.5 exposure in China: using novel exposure-response functions with multiple exposure windows. <i>Atmospheric Environment</i> , 2021 , 246, 118098	5.3	3
98	Evaluation of regional transport of PM during severe atmospheric pollution episodes in the western Yangtze River Delta, China. <i>Journal of Environmental Management</i> , 2021 , 293, 112827	7.9	3
97	Reactive Ambient Particles. <i>Molecular and Integrative Toxicology</i> , 2015 , 1-24	0.5	2
96	Carcinogenic risks of particulate matter during Middle Eastern dust events and normal days. <i>Atmospheric Pollution Research</i> , 2020 , 11, 1566-1571	4.5	2
95	Apportionment of PM adjacent to the I-710 Harbor Freeway in Long Beach, CA. <i>Journal of the Air and Waste Management Association</i> , 2020 , 70, 260-282	2.4	2
94	Particle nucleation in a forested environment. Atmospheric Pollution Research, 2014, 5, 805-810	4.5	2
93	Comparison of PoraPak Rxn RP and XAD-2 adsorbents for monitoring dissolved hydrophobic organic contaminants. <i>Environmental Monitoring and Assessment</i> , 2014 , 186, 7565-77	3.1	2
92	Particle Deposition in the Human Respiratory Tract 2012 , 223-240		2
91	Ambient silver concentration anomaly in the Finnish Arctic lower atmosphere. <i>Environmental Science & Environmental </i>	10.3	2
90	An algorithm for semi-empirical design of nucleation rate surface. <i>Journal of Colloid and Interface Science</i> , 2005 , 290, 107-16	9.3	2
89	Surface Topology of the Ion-Induced Vapor Nucleation Rate. <i>Aerosol Science and Technology</i> , 1998 , 29, 547-556	3.4	2
88	Chemometrics tutorials. <i>Analytica Chimica Acta</i> , 1991 , 245, 290	6.6	2
87	Characterization of Radon Decay Products in a Domestic Environment. <i>Indoor Air</i> , 1991 , 1, 539-561	5.4	2
86	Measurement of Activity-Weighted Size Distributions of Radon Decay Products in a Normally Occupied Home. <i>Radiation Protection Dosimetry</i> , 1992 , 45, 329-331	0.9	2
85	Comments on prior use of the Malinowski indicator function in TTFA receptor modeling. Atmospheric Environment, 1986 , 20, 605-606		2

84	The Feasibility of Using Activated Charcoal To Control Indoor Radon. ACS Symposium Series, 1987, 560-	5694	2
83	Radon and Its Decay Products: An Overview. <i>ACS Symposium Series</i> , 1987 , 1-8	0.4	2
82	Limits in charged-particle collection by charged drops. <i>Environmental Science & Environmental Science</i>	10.3	2
81	The dynamics of diquat in a model eco-system. <i>Environmental Letters</i> , 1975 , 8, 325-35		2
80	Hindered beta decay of Nbm95 and the decay sequence Zr95->Nbm,g95->Mo95. <i>Physical Review C</i> , 1976 , 13, 434-436	2.7	2
79	Spectrophotometric determination of nitrate ion in fresh water. <i>International Journal of Environmental Analytical Chemistry</i> , 1974 , 3, 185-90	1.8	2
78	Emission fluxes of different metals in aerosol emitted during frying-Effect of frying pan. <i>ISEE Conference Abstracts</i> , 2013 , 2013, 5075	2.9	2
77	Prediction of COVID-19 Cases from the Nexus of Air Quality and Meteorological Phenomena: Bangladesh Perspective. <i>Earth Systems and Environment</i> , 2021 , 6, 1-19	7.5	2
76	Influence of transboundary air pollution and meteorology on air quality in three major cities of Anhui Province, China. <i>Journal of Cleaner Production</i> , 2021 , 329, 129641	10.3	2
75	On the Performance Parameters of PM2.5 and PM1 Size Separators for Ambient Aerosol Monitoring. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 2173-2184	4.6	2
74	Case Studies of Source Apportionment from North America. <i>Issues in Environmental Science and Technology</i> , 2016 , 126-167	0.7	2
73	Evaluation of Room Air Cleaners for the Reduction of Exposure and Dose to Indoor Radon Progeny. <i>Radiation Protection Dosimetry</i> , 1994 , 56, 55-60	0.9	2
72	SO and HCHO over the major cities of Kazakhstan from 2005 to 2016: influence of political, economic and industrial changes. <i>Scientific Reports</i> , 2020 , 10, 12635	4.9	2
71	Health and charge benefits from decreasing PM2.5 concentrations in New York State: Effects of changing compositions. <i>Atmospheric Pollution Research</i> , 2021 , 12, 47-53	4.5	2
70	Recent advances in air pollution mixture resolutions. <i>Microchemical Journal</i> , 2021 , 163, 105907	4.8	2
69	Fractal Analysis and Interpretation of Temporal Patterns of TSP and PM10 Mass Concentration over Tarkwa, Ghana. <i>Earth Systems and Environment</i> , 2021 , 5, 635-654	7.5	2
68	Risk of Influenza and Respiratory Syncytial Virus Infection Associated with Particulate Air Pollution: An Adult Case-Control Study 2019 ,		2
67	Analysis of Postdeployment Serum Samples Identifies Potential Biomarkers of Exposure to Burn Pits and Other Environmental Hazards. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S45-S54	2	2

66	Machine Learning Approach for Predicting Past Environmental Exposures From Molecular Profiling of Post-Exposure Human Serum Samples. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S55-S64	2	2
65	Approaches to reducing rotational ambiguity in receptor modeling of ambient particulate matter. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2021 , 210, 104252	3.8	2
64	Analysis of Mineral Phases in Coal Utilizing Factor Analysis 1982, 163-174		2
63	Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 38631-38643	5.1	1
62	The mystery Well A natural cloud chamber?. Journal of Aerosol Science, 2015, 81, 70-74	4.3	1
61	A similarity measure for two-dimensional fluorescent spectra. <i>Applied Spectroscopy</i> , 2009 , 63, 810-4	3.1	1
60	Environmental Chemometrics 2009 , 55-74		1
59	General Requirements and Recommendations for Vapor Nucleation Rate Experiments. <i>Aerosol Science and Technology</i> , 2003 , 37, 183-186	3.4	1
58	Response to Comment on Docating PCB Sources in Chicago: Receptor Modeling and Field Sampling Denvironmental Science & Technology, 2003, 37, 5838-5838	10.3	1
57	04.O.05 A study on the sources of air pollutants observed at TjEn, Sweden. <i>Journal of Aerosol Science</i> , 1994 , 25, 31-32	4.3	1
56	Radon and radon progeny measurements. <i>TrAC - Trends in Analytical Chemistry</i> , 1991 , 10, 243-249	14.6	1
55	Theoretical Evaluation of Indoor Radon Control Using a Carbon Adsorption System. <i>Japca</i> , 1989 , 39, 305	5-309	1
54	Two Medieval Enameled Objects Studied by X-ray Fluorescence. Advances in Chemistry Series, 1989, 233	-247	1
53	Chapter 15 The Use of Fractal Dimension to Characterize Individual Airborne Particles. <i>Data Handling in Science and Technology</i> , 1990 , 173-178	2.7	1
52	Another coprocessor board to add power to your PC. TrAC - Trends in Analytical Chemistry, 1986, 5, 252-	25 β6	1
51	Calibration of a cyclone separator for atmospheric sampling. <i>Science of the Total Environment</i> , 1987 , 65, 261-266	10.2	1
50	A Simple Methodology for the Determination of Back Trajectories. <i>Japca</i> , 1988 , 38, 812-813		1
49	Observer: Receptor models in air pollution. <i>TrAC - Trends in Analytical Chemistry</i> , 1984 , 3, vi-vii	14.6	1

48	Calibration of an autoranging condensation nuclei counter. Atmospheric Environment, 1982, 16, 2999-30	001	1
47	Changing Emissions Results in Changed PM2.5 Composition and Health Impacts. <i>Atmosphere</i> , 2022 , 13, 193	2.7	1
46	Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH		1
45	Effects of ambient air pollutants on hospital admissions and deaths for cardiovascular diseases: a time series analysis in Tehran. <i>Environmental Science and Pollution Research</i> , 2021 , 29, 17997	5.1	1
44	Factor and Correlation Analysis of Multivariate Environmental Data 1992, 139		1
43	Theoretical equilibration time is supported by measurement study of residence time at dilution sampling on fine particulate matter emissions from household biofuel burning. <i>Chemosphere</i> , 2021 , 267, 129178	8.4	1
42	Relationship between ambient black carbon and daily mortality in Tehran, Iran: a distributed lag nonlinear time series analysis. <i>Journal of Environmental Health Science & Engineering</i> , 2021 , 19, 907-916	2.9	1
41	Assessment of BTEX exposure and carcinogenic risks for mail carriers in Tehran, Iran. <i>Air Quality, Atmosphere and Health</i> , 2021 , 14, 1365-1373	5.6	1
40	Respiratory Emergency Department Visits Associations with Exposures to PM Mass, Constituents, and Sources in Dhaka, Bangladesh Air Pollution. <i>Annals of the American Thoracic Society</i> , 2021 ,	4.7	1
39	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006787	5.9	1
38	Current State of Particulate Air Quality 2018 , 1-19		1
37	The effect of air pollution on the transcriptomics of the immune response to respiratory infection. <i>Scientific Reports</i> , 2021 , 11, 19436	4.9	1
36	Positive matrix factorization applied to a curve resolution problem 1998 , 12, 357		1
35	A Preliminary Investigation into the Possible Emission Sources for Atmospheric Mercury Found in the Lake Champlain Basin 2004 , 21-37		1
34	Improved positive matrix factorization for source apportionment of volatile organic compounds in vehicular emissions during the Spring Festival in Tianjin, China <i>Environmental Pollution</i> , 2022 , 303, 119	122	1
33	Evaluation of impact of "2+26? regional strategies on air quality improvement of different functional districts in Beijing based on a long-term field campaign. <i>Environmental Research</i> , 2022 , 212, 113452	7.9	1
32	Assessment of source profiles for suspended particulate pollutants in Ibadan, Nigeria using positive matrix factorization. <i>Ife Journal of Science</i> , 2019 , 21, 73	0.6	0
31	COMPARISON BETWEEN CONDITIONAL PROBABILITY FUNCTION AND NONPARAMETRIC RECESSION FOR THE SOURCE DIRECTION OF FINE PARTICLES. <i>Journal of Aerosol Science</i> , 2004 , 35, S85	7 ⁴ 5²858	3 ^O

30	Long-term PM2.5 source analyses in New York City from the perspective of dispersion normalized PMF. <i>Atmospheric Environment</i> , 2022 , 272, 118949	5.3	0
29	Introduction to Particles in Indoor Air 2022 , 1-13		O
28	Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state. <i>Environmental Monitoring and Assessment</i> , 2021 , 193, 790	3.1	0
27	Forecasting Ambient Air Pollutants in Tehran, Iran. Environmental Justice, 2020, 13, 193-201	1.7	O
26	Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	0
25	Source apportionment of PM in Seoul, South Korea and Beijing, China using dispersion normalized PMF Science of the Total Environment, 2022 , 155056	10.2	O
24	Development and evaluation of an integrated method using distance- and probability-based profile matching approaches in receptor modeling. <i>Atmospheric Pollution Research</i> , 2022 , 13, 101423	4.5	0
23	Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. <i>Environment International</i> , 2022 , 165, 107330	12.9	O
22	Technical details of the equation oriented system. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2012 , 118, 74-78	3.8	
21	Introduction to a special grouping of papers from the 2012 A&WMA International Specialty Conference, Aerosol and Atmospheric Optics: Visibility and Air Pollution. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 1003	2.4	
20	Elements of the topology of nucleation rate surfaces in the vicinity of the triple point. <i>Doklady Physical Chemistry</i> , 2007 , 417, 297-300	0.8	
19	Remarks on the article B ilinear estimation of pollution source profiles and amounts by using multivariate receptor models [Environmetrics, 2002 , 13, 803-805]	1.3	
18	Rebuttal to "Unfilterable 'geoaerosols', their use in the search for thermal, mineral and mineralized waters, and their possible influence on the origin of certain types of mineral waters" by B. Krcmar and T. Vylita, published in Environmental Geology 40(6):678B82. Environmental Geology, 2002, 41, 984-	985	
17	Mixed multiway analysis of airborne particle composition data 1999 , 3854, 36		
16	How to start surfing the internet. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1995 , 30, 1-9	3.8	
15	Comments on Bource apportionment with one source unknown by K. Bandeen-Roche and D. Ruppert. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1991 , 10, 185-187	3.8	
14	Chapter 6 Quantitative Determination of Highway emissions in the Air Using Receptor Models. <i>Studies in Environmental Science</i> , 1991 , 209-258		
13	Chapter 2 The Application of Supercomputers to Chemometrics. <i>Data Handling in Science and Technology</i> , 1990 , 6, 9-19	2.7	

LIST OF PUBLICATIONS

12	Chapter 16 Use of a Rule-Building Expert System for Classifying Particles Based on Sem Analysis. <i>Data Handling in Science and Technology</i> , 1990 , 6, 179-198	2.7
11	Development of a Mobility Analyzer for Studying the Particle-Producing Phenomena Related to Radon Progeny. <i>ACS Symposium Series</i> , 1987 , 357-364	0.4
10	Identification of noise in linear data sets by factor analysis. <i>Journal of Radioanalytical Chemistry</i> , 1982 , 70, 483-495	
9	Fitting statistical distributions to air quality data by the maximum likelihood method. <i>Atmospheric Environment</i> , 1982 , 16, 1574-1575	
8	Radioactivity from a Nuclear Fuel Reprocessing Plant Found in Natural Waters. <i>International Journal of Environmental Analytical Chemistry</i> , 1975 , 4, 65-74	1.8
7	Foreign Students and U.S. Economic Health. <i>Science</i> , 1991 , 253, 1194-1194	33-3
6	Experimental study of ion-induced nucleation of volatile organic compounds by radon decay 1996 , 50-	53
5	Sources of PM in the environment 2013 , 22-33	
4	Environmental Chemometrics 2020 , 69-85	
3	Measuring Particle Concentrations and Composition in Indoor Air 2021 , 1-51	
2	Introduction to Aerosol Dynamics 2021 , 1-28	
1	Fundamentals of Exposure Science 2022 , 1-17	