List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831422/publications.pdf Version: 2024-02-01

ZHANOING LL

#	Article	IF	CITATIONS
1	Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 2012, 50, .	23.0	657
2	Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 2016, 54, 866-929.	23.0	591
3	Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 2017, 4, 810-833.	9.5	524
4	Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 2017, 55, 719-778.	23.0	507
5	Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 2011, 4, 888-894.	12.9	483
6	Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252, 112136.	11.0	429
7	Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,398.	3.3	384
8	The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 2016, 16, 13309-13319.	4.9	384
9	Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 2019, 231, 111221.	11.0	340
10	Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. Journal of Geophysical Research, 2010, 115, .	3.3	325
11	Improved 1 km resolution PM _{2.5} estimates across China using enhanced space–time extremely randomized trees. Atmospheric Chemistry and Physics, 2020, 20, 3273-3289.	4.9	321
12	Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Annales Geophysicae, 2009, 27, 2755-2770.	1.6	290
13	Substantial convection and precipitation enhancements by ultrafineaerosol particles. Science, 2018, 359, 411-418.	12.6	290
14	Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4581-90.	7.1	274
15	Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment, 2006, 102, 293-305.	11.0	267
16	Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 2014, 14, 2125-2138.	4.9	266
17	Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. Journal of Geophysical Research, 2009, 114, .	3.3	265
18	Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sensing of Environment, 2002, 81, 1-18.	11.0	252

#	Article	IF	CITATIONS
19	Hotspot and NDVI Differencing Synergy (HANDS) A New Technique for Burned Area Mapping over Boreal Forest. Remote Sensing of Environment, 2000, 74, 362-376.	11.0	243
20	The Joint Aerosol–Monsoon Experiment: A New Challenge for Monsoon Climate Research. Bulletin of the American Meteorological Society, 2008, 89, 369-384.	3.3	241
21	India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide. Scientific Reports, 2017, 7, 14304.	3.3	230
22	A review of satellite methods to derive surface shortwave irradiance. Remote Sensing of Environment, 1995, 51, 108-124.	11.0	228
23	Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. Journal of Geophysical Research, 2010, 115, .	3.3	221
24	Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6472-6488.	3.3	212
25	Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmospheric Chemistry and Physics, 2017, 17, 3097-3110.	4.9	210
26	Aerosol optical properties and their radiative effects in northern China. Journal of Geophysical Research, 2007, 112, .	3.3	209
27	MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmospheric Environment, 2019, 201, 428-440.	4.1	209
28	Multitemporal, multichannel AVHRR data sets for land biosphere studies—Artifacts and corrections. Remote Sensing of Environment, 1997, 60, 35-57.	11.0	202
29	A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research, 2007, 112, .	3.3	200
30	Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research, 2007, 85, 372-394.	4.1	196
31	Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors. Atmospheric Chemistry and Physics, 2018, 18, 15921-15935.	4.9	195
32	Satellite-Derived 1-km-Resolution PM ₁ Concentrations from 2014 to 2018 across China. Environmental Science & Technology, 2019, 53, 13265-13274.	10.0	195
33	Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. International Journal of Remote Sensing, 2000, 21, 3057-3069.	2.9	185
34	Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998. Geophysical Research Letters, 2000, 27, 1407-1410.	4.0	179
35	Impact of diurnal variability and meteorological factors on the PM2.5 - AOD relationship: Implications for PM2.5 remote sensing. Environmental Pollution, 2017, 221, 94-104.	7.5	178
36	Estimation of SW Flux Absorbed at the Surface from TOA Reflected Flux. Journal of Climate, 1993, 6, 317-330.	3.2	177

#	Article	IF	CITATIONS
37	East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EASTâ€AIR _{CPC}). Journal of Geophysical Research D: Atmospheres, 2019, 124, 13026-13054.	3.3	175
38	Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing of Environment, 2022, 270, 112775.	11.0	174
39	Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 2017, 17, 6073-6089.	4.9	169
40	The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environment International, 2021, 146, 106290.	10.0	168
41	Aerosol optical depth (AOD) and Ãngström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. Journal of Geophysical Research, 2007, 112, .	3.3	166
42	Advances in studying interactions between aerosols and monsoon in China. Science China Earth Sciences, 2016, 59, 1-16.	5.2	153
43	Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. Journal of Geophysical Research, 2012, 117, .	3.3	152
44	Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EASTâ€AIRE). Journal of Geophysical Research, 2007, 112, .	3.3	151
45	The variable effect of clouds on atmospheric absorption of solar radiation. Nature, 1995, 376, 486-490.	27.8	149
46	Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. Journal of Geophysical Research, 1993, 98, 4919-4930.	3.3	147
47	Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. Journal of Geophysical Research, 2010, 115, .	3.3	146
48	Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophysical Research Letters, 2015, 42, 6066-6075.	4.0	144
49	Validation of SO ₂ retrievals from the Ozone Monitoring Instrument over NE China. Journal of Geophysical Research, 2008, 113, .	3.3	139
50	Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. Journal of Geophysical Research, 2008, 113, .	3.3	138
51	Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmospheric Chemistry and Physics, 2013, 13, 10171-10183.	4.9	135
52	How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States?. Atmospheric Environment, 2015, 102, 260-273.	4.1	133
53	Recent trends in aerosol optical properties derived from AERONET measurements. Atmospheric Chemistry and Physics, 2014, 14, 12271-12289.	4.9	132
54	Estimation of surface albedo from space: A parameterization for global application. Journal of Geophysical Research, 1994, 99, 8335.	3.3	129

#	Article	IF	CITATIONS
55	Aerosol optical properties and radiative effects in the Yangtze Delta region of China. Journal of Geophysical Research, 2007, 112, .	3.3	120
56	East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. Journal of Geophysical Research, 2011, 116, .	3.3	119
57	Declining frequency of summertime localâ€scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophysical Research Letters, 2017, 44, 5700-5708.	4.0	113
58	Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflectances: Analysis and removal. Journal of Geophysical Research, 1995, 100, 9179.	3.3	109
59	Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sensing of Environment, 2019, 233, 111371.	11.0	109
60	Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using groundâ€based measurements from the handheld Sun photometer network in China. Journal of Geophysical Research, 2007, 112, .	3.3	108
61	First observationâ€based estimates of cloudâ€free aerosol radiative forcing across China. Journal of Geophysical Research, 2010, 115, .	3.3	108
62	Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment, 2002, 82, 95-110.	11.0	106
63	Interaction Between Planetary Boundary Layer and PM2.5 Pollution in Megacities in China: a Review. Current Pollution Reports, 2019, 5, 261-271.	6.6	100
64	Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophysical Research Letters, 2012, 39, .	4.0	99
65	Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. Journal of Geophysical Research, 2007, 112, .	3.3	98
66	Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 2012, 12, 8491-8498.	4.9	97
67	Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theoretical and Applied Genetics, 2000, 100, 344-352.	3.6	95
68	Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. Journal of Geophysical Research, 2007, 112, .	3.3	94
69	Enlarging Rainfall Area of Tropical Cyclones by Atmospheric Aerosols. Geophysical Research Letters, 2018, 45, 8604-8611.	4.0	94
70	Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2508-2521.	3.3	93
71	Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 2022, 3, 363-379.	29.7	93
72	Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 1859-1870.	6.3	92

#	Article	IF	CITATIONS
73	In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment 2005. Journal of Geophysical Research, 2007, 112, .	3.3	91
74	Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5828-5834.	7.1	91
75	On Solar Energy Disposition:A Perspective from Observation and Modeling. Bulletin of the American Meteorological Society, 1997, 78, 53-70.	3.3	90
76	Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin. Scientific Reports, 2016, 6, 36940.	3.3	90
77	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260†m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	4.9	90
78	Ground-Level NO ₂ Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environmental Science & Technology, 2022, 56, 9988-9998.	10.0	90
79	A Near-Global Climatology of Single-Layer and Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS Data Using a New Algorithm. Journal of Climate, 2005, 18, 4752-4771.	3.2	89
80	Intercomparison of shortwave radiative transfer codes and measurements. Journal of Geophysical Research, 2005, 110, .	3.3	88
81	Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar. Atmospheric Chemistry and Physics, 2018, 18, 13329-13343.	4.9	88
82	Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. Journal of Geophysical Research, 2002, 107, AAC 7-1.	3.3	87
83	Seasonal variations in aerosol optical properties over China. Journal of Geophysical Research, 2011, 116, .	3.3	87
84	Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China. Journal of Geophysical Research, 2007, 112, .	3.3	86
85	Himawari-8-derived diurnal variations in ground-level PM _{2.5} pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM). Atmospheric Chemistry and Physics, 2021, 21, 7863-7880.	4.9	86
86	Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmospheric Environment, 2013, 79, 518-528.	4.1	83
87	Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 2016, 9, 790-794.	12.9	79
88	The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol–planetary boundary layer (PBL) interactions. Atmospheric Chemistry and Physics, 2020, 20, 3713-3724.	4.9	79
89	Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption. Journal of Climate, 1998, 11, 5-17.	3.2	78
90	Satellite-based mapping of Canadian boreal forest fires: Evaluation and comparison of algorithms. International Journal of Remote Sensing, 2000, 21, 3071-3082.	2.9	76

#	Article	IF	CITATIONS
91	Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties. Atmospheric Chemistry and Physics, 2014, 14, 471-483.	4.9	75
92	A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties. Journals of the Atmospheric Sciences, 2005, 62, 3993-4009.	1.7	74
93	The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Science of the Total Environment, 2020, 735, 139559.	8.0	73
94	Estimation of aerosol effects on surface irradiance based on measurements and radiative transfer model simulations in northern China. Journal of Geophysical Research, 2007, 112, .	3.3	72
95	Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophysical Research Letters, 2008, 35, .	4.0	72
96	Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Advances in Atmospheric Sciences, 2015, 32, 898-908.	4.3	72
97	An intercomparison of longâ€term planetary boundary layer heights retrieved from CALIPSO, groundâ€based lidar, and radiosonde measurements over Hong Kong. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3929-3943.	3.3	72
98	Optical properties of boreal forest fire smoke derived from Sun photometry. Journal of Geophysical Research, 2002, 107, AAC 6-1-AAC 6-19.	3.3	71
99	Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. International Journal of Climatology, 2014, 34, 2940-2956.	3.5	71
100	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC ³ Exp campaign: implications for cloud condensation nuclei parameterization. Atmospheric Chemistry and Physics, 2014, 14, 13423-13437.	4.9	71
101	The bidirectional effects of AVHRR measurements over boreal regions. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34, 1308-1322.	6.3	69
102	Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. Atmospheric Environment, 2009, 43, 879-888.	4.1	69
103	Dust aerosol vertical structure measurements using three MPL lidars during 2008 Chinaâ€U.S. joint dust field experiment. Journal of Geophysical Research, 2010, 115, .	3.3	68
104	Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations. Journal of Climate, 1993, 6, 1764-1772.	3.2	66
105	Vertical profiles of NO&Itsub>2&It/sub>, SO&Itsub>2&It/sub>, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics, 2019, 19,	4.9	66
106	Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm. Atmospheric Environment, 2019, 208, 113-122.	4.1	66
107	Assessment of the Global Monthly Mean Surface Insolation Estimated from Satellite Measurements Using Global Energy Balance Archive Data. Journal of Climate, 1995, 8, 315-328.	3.2	65
108	Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmospheric Research, 2008, 89, 194-205.	4.1	65

#	Article	IF	CITATIONS
109	The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?. Atmospheric Chemistry and Physics, 2018, 18, 12797-12816.	4.9	65
110	Precipitation and air pollution at mountain and plain stations in northern China: Insights gained from observations and modeling. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4793-4807.	3.3	63
111	A New Parameterization for the Determination of Solar Flux Absorbed at the Surface from Satellite Measurements. Journal of Climate, 1995, 8, 1615-1629.	3.2	62
112	Can interannual land surface signal be discerned in composite AVHRR data?. Journal of Geophysical Research, 1998, 103, 23163-23172.	3.3	61
113	Land-use change analysis in Yulin prefecture, northwestern China using remote sensing and GIS. International Journal of Remote Sensing, 2004, 25, 5691-5703.	2.9	61
114	Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	60
115	New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environment International, 2020, 144, 106060.	10.0	60
116	SPOT VEGETATION for characterizing boreal forest fires. International Journal of Remote Sensing, 2000, 21, 3525-3532.	2.9	59
117	A new cloud and aerosol layer detection method based on micropulse lidar measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6788-6802.	3.3	59
118	Aerosol properties at a midlatitude northern hemisphere continental site. Journal of Geophysical Research, 2001, 106, 3019-3032.	3.3	58
119	Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: Perspective for MODIS. International Journal of Remote Sensing, 2003, 24, 1669-1690.	2.9	58
120	Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements. Journal of Geophysical Research, 2010, 115, .	3.3	58
121	Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in China. Atmospheric Research, 2012, 113, 113-125.	4.1	58
122	Wintertime cooling and a potential connection with transported aerosols in Hong Kong during recent decades. Atmospheric Research, 2018, 211, 52-61.	4.1	58
123	Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. Journal of Geophysical Research, 2002, 107, ACL 17-1.	3.3	57
124	Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China. Journal of Geophysical Research, 2007, 112, .	3.3	57
125	Increases in thunderstorm activity and relationships with air pollution in southeast China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1835-1844.	3.3	57
126	Narrowband to Broadband Conversion with Spatially Autocorrelated Reflectance Measurements. Journal of Applied Meteorology and Climatology, 1992, 31, 421-432.	1.7	56

#	Article	IF	CITATIONS
127	Monitoring fire activities in the boreal ecosystem. Journal of Geophysical Research, 1997, 102, 29611-29624.	3.3	56
128	Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data. Remote Sensing of Environment, 2007, 108, 198-208.	11.0	56
129	Aerosol optical depth measurements in eastern China and a new calibration method. Journal of Geophysical Research, 2010, 115, .	3.3	56
130	Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmospheric Environment, 2011, 45, 6317-6325.	4.1	56
131	Classification and investigation of Asian aerosol absorptive properties. Atmospheric Chemistry and Physics, 2013, 13, 2253-2265.	4.9	56
132	A CloudSat Perspective on the Cloud Climatology and Its Association with Aerosol Perturbations in the Vertical over Eastern China. Journals of the Atmospheric Sciences, 2016, 73, 3599-3616.	1.7	56
133	Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region. Journal of Geophysical Research, 2005, 110, .	3.3	55
134	Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades. , 2009, , 13-38.		55
135	SO ₂ over central China: Measurements, numerical simulations and the tropospheric sulfur budget. Journal of Geophysical Research, 2012, 117, .	3.3	55
136	Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. Journal of Geophysical Research, 2012, 117, .	3.3	55
137	Changes in surface aerosol extinction trends over China during 1980–2013 inferred from qualityâ€controlled visibility data. Geophysical Research Letters, 2016, 43, 8713-8719.	4.0	55
138	Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 5239-5251.	4.9	55
139	Abnormally Shallow Boundary Layer Associated With Severe Air Pollution During the COVIDâ€19 Lockdown in China. Geophysical Research Letters, 2020, 47, e2020GL090041.	4.0	54
140	A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data. Journal of Geophysical Research, 2009, 114, .	3.3	53
141	Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE. Atmospheric Environment, 2007, 41, 7138-7149.	4.1	52
142	Simultaneous measurements of particle number size distributions at ground level and 260†m on a meteorological tower in urban Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 6797-6811.	4.9	52
143	Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmospheric Environment, 2011, 45, 6469-6480.	4.1	51
144	Using singleâ€scattering albedo spectral curvature to characterize East Asian aerosol mixtures. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2037-2052.	3.3	50

#	Article	IF	CITATIONS
145	Studying the vertical variation of cloud droplet effective radius using ship and spaceâ€borne remote sensing data. Journal of Geophysical Research, 2008, 113, .	3.3	49
146	Heavy air pollution suppresses summer thunderstorms in central China. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 95-96, 28-40.	1.6	49
147	Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 6907-6921.	4.9	49
148	Constraining the Twomey effect from satellite observations: issues and perspectives. Atmospheric Chemistry and Physics, 2020, 20, 15079-15099.	4.9	49
149	Validation and Calibration of Canada-Wide Coarse-Resolution Satellite Burned-Area Maps. Photogrammetric Engineering and Remote Sensing, 2004, 70, 451-460.	0.6	48
150	Application of spectral analysis techniques in the intercomparison of aerosol data: 1. An EOF approach to analyze the spatialâ€ŧemporal variability of aerosol optical depth using multiple remote sensing data sets. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8640-8648.	3.3	48
151	Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 11739-11752.	4.9	48
152	Declining Summertime Local‣cale Precipitation Frequency Over China and the United States, 1981–2012: The Disparate Roles of Aerosols. Geophysical Research Letters, 2019, 46, 13281-13289.	4.0	48
153	A new method for cross-calibration of two satellite sensors. International Journal of Remote Sensing, 2004, 25, 5267-5281.	2.9	47
154	Impact of the Vertical Variation of Cloud Droplet Size on the Estimation of Cloud Liquid Water Path and Rain Detection. Journals of the Atmospheric Sciences, 2007, 64, 3843-3853.	1.7	47
155	Opposite long-term trends in aerosols between low and high altitudes: a testimony to the aerosol–PBL feedback. Atmospheric Chemistry and Physics, 2017, 17, 7997-8009.	4.9	47
156	Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environmental Research Letters, 2018, 13, 034006.	5.2	47
157	Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmospheric Chemistry and Physics, 2019, 19, 1327-1342.	4.9	47
158	Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches. Remote Sensing of Environment, 2020, 248, 112005.	11.0	47
159	Scene identification and its effect on cloud radiative forcing in the Arctic. Journal of Geophysical Research, 1991, 96, 9175-9188.	3.3	46
160	Assessment and comparison of three years of Terra and Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrial regions. Atmospheric Research, 2010, 97, 229-240.	4.1	46
161	Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling. Geophysical Research Letters, 2016, 43, 11,407.	4.0	46
162	Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products. Science of the Total Environment, 2019, 692, 879-891.	8.0	46

#	Article	IF	CITATIONS
163	Seasonal AVHRR multichannel data sets and products for studies of surface-atmosphere interactions. Journal of Geophysical Research, 1997, 102, 29625-29640.	3.3	45
164	Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site. Journal of Geophysical Research, 2007, 112, .	3.3	45
165	Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earthâ€viewing satellite perspective. Journal of Geophysical Research, 2008, 113, .	3.3	45
166	Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. Journal of Geophysical Research, 2005, 110, .	3.3	44
167	Impact of aerosols on precipitation from deep convective clouds in eastern China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9607-9620.	3.3	44
168	Origin, Maintenance and Variability of the Asian Tropopause Aerosol Layer (ATAL): The Roles of Monsoon Dynamics. Scientific Reports, 2018, 8, 3960.	3.3	44
169	Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmospheric Research, 2019, 227, 198-209.	4.1	44
170	A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions. Remote Sensing of Environment, 2020, 237, 111519.	11.0	44
171	MODIS Collection 6.1 3Âkm resolution aerosol optical depth product: global evaluation and uncertainty analysis. Atmospheric Environment, 2020, 240, 117768.	4.1	44
172	The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmospheric Chemistry and Physics, 2020, 20, 6479-6493.	4.9	44
173	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	4.9	44
174	Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. Journal of Geophysical Research, 2010, 115, .	3.3	43
175	Alteration of Atmospheric Solar Absorption by Clouds: Simulation and Observation. Journal of Applied Meteorology and Climatology, 1996, 35, 653-670.	1.7	42
176	Smoke over haze: Aircraft observations of chemical and optical properties and the effects on heating rates and stability. Journal of Geophysical Research, 2004, 109, .	3.3	42
177	General Macro- and Microphysical Properties of Deep Convective Clouds as Observed by MODIS. Journal of Climate, 2010, 23, 3457-3473.	3.2	42
178	Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmospheric Chemistry and Physics, 2016, 16, 5413-5425.	4.9	42
179	Improved Simulation of Clear-Sky Shortwave Radiative Transfer in the CCC-GCM. Journal of Climate, 1995, 8, 2213-2223.	3.2	41
180	Effects of plastic film mulching with drip irrigation on N ₂ O and CH ₄ emissions from cotton fields in arid land. Journal of Agricultural Science, 2014, 152, 534-542.	1.3	40

#	Article	IF	CITATIONS
181	A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmospheric Research, 2018, 207, 14-27.	4.1	40
182	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,723.	3.3	39
183	A Regionally Robust High-Spatial-Resolution Aerosol Retrieval Algorithm for MODIS Images Over Eastern China. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 4748-4757.	6.3	39
184	Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 901-914.	4.9	39
185	Estimation of aerosol single scattering albedo from solar direct spectral radiance and total broadband irradiances measured in China. Journal of Geophysical Research, 2007, 112, .	3.3	38
186	Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China. Journal of Geophysical Research, 2010, 115, .	3.3	38
187	Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains. Atmospheric Chemistry and Physics, 2014, 14, 7113-7124.	4.9	38
188	Response of SO ₂ and particulate air pollution to local and regional emission controls: A case study in Maryland. Earth's Future, 2016, 4, 94-109.	6.3	38
189	Systematic Changes in Cloud Radiative Forcing with Aerosol Loading for Deep Clouds in the Tropics. Journals of the Atmospheric Sciences, 2016, 73, 231-249.	1.7	38
190	Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China. Atmospheric Environment, 2017, 170, 290-302.	4.1	38
191	A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. International Journal of Wildland Fire, 2004, 13, 275.	2.4	37
192	New evidence of orographic precipitation suppression by aerosols in central China. Meteorology and Atmospheric Physics, 2013, 119, 17-29.	2.0	37
193	Satellite Inference of Thermals and Cloud-Base Updraft Speeds Based on Retrieved Surface and Cloud-Base Temperatures. Journals of the Atmospheric Sciences, 2015, 72, 2411-2428.	1.7	37
194	Characterization of submicron aerosols at a suburban site in central China. Atmospheric Environment, 2016, 131, 115-123.	4.1	37
195	Seasonal and diurnal variability of planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results. Atmospheric Research, 2019, 227, 1-13.	4.1	37
196	Underestimated Change of Wetâ€Bulb Temperatures Over East and South China. Geophysical Research Letters, 2020, 47, e2019GL086140.	4.0	37
197	The Effects of Scattering Angle and Cumulus Cloud Geometry on Satellite Retrievals of Cloud Droplet Effective Radius. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1039-1045.	6.3	36
198	Retrieval of Aerosol Optical Thickness Using MODIS \$ hbox{500} imes hbox{500} hbox{m}^{2}\$, a Study in Hong Kong and the Pearl River Delta Region. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 3318-3327.	6.3	35

#	Article	IF	CITATIONS
199	A study of warm rain detection using A-Train satellite data. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	35
200	Analysis of cloud condensation nuclei properties at a polluted site in southeastern China during the AMF-China Campaign. Journal of Geophysical Research, 2011, 116, .	3.3	35
201	Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China. Atmospheric Research, 2015, 155, 73-86.	4.1	35
202	Interpreting shortwave albedo-transmittance plots: True or apparent anomalous absorption?. Geophysical Research Letters, 1997, 24, 2023-2026.	4.0	34
203	Simulations of fine particulate matter (PM2.5) in Houston, Texas. Journal of Geophysical Research, 2005, 110, .	3.3	34
204	Transport and evolution of a pollution plume from northern China: A satelliteâ€based case study. Journal of Geophysical Research, 2010, 115, .	3.3	34
205	Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,739.	3.3	34
206	Relationship between Asian monsoon strength and transport of surface aerosols to the Asian Tropopause Aerosol Layer (ATAL): interannual variability and decadal changes. Atmospheric Chemistry and Physics, 2019, 19, 1901-1913.	4.9	34
207	A Deep Learning Approach to Improve the Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8427-8437.	6.3	34
208	GeoComp-n, an advanced system for the processing of coarse and medium resolution satellite data. Part 2: Biophysical products for Northern ecosystems. Canadian Journal of Remote Sensing, 2002, 28, 21-44.	2.4	33
209	Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea. Atmospheric Measurement Techniques, 2018, 11, 2295-2311.	3.1	33
210	Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 2020, 20, 915-929.	4.9	33
211	Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation. Atmospheric Chemistry and Physics, 2020, 20, 14163-14182.	4.9	33
212	Land Cover of the BOREAS Region from AVHRR and Landsat data. Canadian Journal of Remote Sensing, 1997, 23, 163-175.	2.4	32
213	Evaluation of algorithms for fire detection and mapping across North America from satellite. Journal of Geophysical Research, 2003, 108, .	3.3	32
214	Surface bidirectional reflectance and albedo properties derived using a land cover–based approach with Moderate Resolution Imaging Spectroradiometer observations. Journal of Geophysical Research, 2005, 110, .	3.3	32
215	Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models. Atmospheric Chemistry and Physics, 2018, 18, 1395-1417.	4.9	32
216	Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products. Atmospheric Environment, 2019, 202, 315-327.	4.1	32

#	Article	IF	CITATIONS
217	Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from Space. Remote Sensing, 2020, 12, 208.	4.0	32
218	Selecting Representative High Resolution Sample Images for Land Cover Studies. Part 1 Methodology. Remote Sensing of Environment, 2000, 71, 26-42.	11.0	31
219	Validation of an UV inversion algorithm using satellite and surface measurements. Journal of Geophysical Research, 2000, 105, 5037-5048.	3.3	31
220	Quantifying Uncertainties in Determining SW Cloud Radiative Forcing and Cloud Absorption due to Variability in Atmospheric Conditions. Journals of the Atmospheric Sciences, 2001, 58, 376-389.	1.7	31
221	An intercomparison of AOD-converted PM2.5 concentrations using different approaches for estimating aerosol vertical distribution. Atmospheric Environment, 2017, 166, 531-542.	4.1	31
222	Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals. Atmospheric Chemistry and Physics, 2017, 17, 12133-12143.	4.9	31
223	Under What Conditions Can We Trust Retrieved Cloud Drop Concentrations in Broken Marine Stratocumulus?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8754-8767.	3.3	31
224	Using Shortâ€Term CO/CO ₂ Ratios to Assess Air Mass Differences Over the Korean Peninsula During KORUSâ€AQ. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10951-10972.	3.3	31
225	A simple and efficient method for retrieving surface UV radiation dose rate from satellite. Journal of Geophysical Research, 2000, 105, 5027-5036.	3.3	30
226	Impact of surface inhomogeneity on solar radiative transfer under overcast conditions. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	30
227	Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer. Journal of Geophysical Research, 2005, 110, .	3.3	30
228	Validation of MODIS aerosol products by CSHNET over China. Science Bulletin, 2007, 52, 1708-1718.	1.7	30
229	Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model using satellite and ground-based measurements. Climate Dynamics, 2013, 41, 1595-1613.	3.8	30
230	Mechanisms Contributing to Suppressed Precipitation in Mt. Hua of Central China. Part I: Mountain Valley Circulation. Journals of the Atmospheric Sciences, 2016, 73, 1351-1366.	1.7	30
231	Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China. Atmospheric Research, 2017, 188, 80-89.	4.1	30
232	Impact of western Pacific subtropical high on ozone pollution over eastern China. Atmospheric Chemistry and Physics, 2021, 21, 2601-2613.	4.9	30
233	Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption. Journal of Geophysical Research, 1999, 104, 19127-19134.	3.3	29
234	Impact of variable atmospheric water vapor content on AVHRR data corrections over land. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 173-180.	6.3	29

#	Article	IF	CITATIONS
235	Retrieval of Optical Depth for Heavy Smoke Aerosol Plumes: Uncertainties and Sensitivities to the Optical Properties. Journals of the Atmospheric Sciences, 2002, 59, 250-261.	1.7	29
236	Comparison between current and future environmental satellite imagers on cloud classification using MODIS. Remote Sensing of Environment, 2007, 108, 311-326.	11.0	29
237	Application of spectral analysis techniques in the intercomparison of aerosol data. Part II: Using maximum covariance analysis to effectively compare spatiotemporal variability of satellite and AERONET measured aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 153-166.	3.3	29
238	Impact of aerosol direct effect on East Asian air quality during the EASTâ€AIRE campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6534-6554.	3.3	29
239	Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophysical Research Letters, 2010, 37, .	4.0	28
240	The longâ€ŧerm trend in the diurnal temperature range over Asia and its natural and anthropogenic causes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3519-3533.	3.3	28
241	An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness, part 1: Algorithm development. Remote Sensing of Environment, 2017, 192, 87-97.	11.0	28
242	Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 8995-9010.	4.9	28
243	Variation in agricultural water demand and its attributions in the arid Tarim River Basin. Journal of Agricultural Science, 2018, 156, 301-311.	1.3	28
244	Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging. Remote Sensing, 2020, 12, 769.	4.0	28
245	AEROSOLS AND CLIMATE: A PERSPECTIVE OVER EAST ASIA. World Scientific Series on Asia-Pacific Weather and Climate, 2004, , 501-525.	0.2	28
246	Analysis of photosynthetic photon flux density and its parameterization in Northern China. Agricultural and Forest Meteorology, 2008, 148, 1101-1108.	4.8	27
247	Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008. Journal of Geophysical Research, 2010, 115, .	3.3	27
248	A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEXâ€B field experiment. Journal of Geophysical Research, 2010, 115, .	3.3	27
249	Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188, 60-70.	2.3	27
250	Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China. Geophysical Research Letters, 2016, 43, 8760-8768.	4.0	26
251	A new approach for remote sensing of canopy absorbed photosynthetically active radiation. II: Proportion of canopy absorption. Remote Sensing of Environment, 1996, 55, 192-204.	11.0	25
252	Significant aerosol direct radiative effects during a pollution episode in northern China. Geophysical Research Letters, 2007, 34, .	4.0	25

#	Article	IF	CITATIONS
253	Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China. Journal of Geophysical Research, 2008, 113, .	3.3	25
254	Analysis of relationships between ultraviolet radiation (295–385 nm) and aerosols as well as shortwave radiation in North China Plain. Annales Geophysicae, 2008, 26, 2043-2052.	1.6	25
255	Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing. Atmospheric Measurement Techniques, 2012, 5, 501-516.	3.1	25
256	Cloud optical and microphysical properties derived from groundâ€based and satellite sensors over a site in the Yangtze Delta region. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9141-9152.	3.3	25
257	Validation of a radiosondeâ€based cloud layer detection method against a groundâ€based remote sensing method at multiple ARM sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 846-858.	3.3	25
258	Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmospheric Chemistry and Physics, 2020, 20, 13379-13397.	4.9	25
259	Intercomparison between two satellite-based products of net surface shortwave radiation. Journal of Geophysical Research, 1995, 100, 3221.	3.3	24
260	Have Clouds Darkened Since 1995?. Science, 2003, 302, 1151-1152.	12.6	24
261	In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing. Journal of Geophysical Research, 2007, 112, .	3.3	24
262	Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products. Climate Dynamics, 2012, 39, 2769-2787.	3.8	24
263	An assessment of the surface longwave direct radiative effect of airborne dust in Zhangye, China, during the Asian Monsoon Years field experiment (2008). Journal of Geophysical Research, 2012, 117, .	3.3	24
264	Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1974-1980.	2.3	24
265	A new approach for remote sensing of canopy-absorbed photosynthetically active radiation. I: Total surface absorption. Remote Sensing of Environment, 1996, 55, 175-191.	11.0	23
266	A Study toward an Improved Understanding of the Relationship between Visible and Shortwave Measurements. Journal of Atmospheric and Oceanic Technology, 1999, 16, 347-360.	1.3	23
267	Selecting Representative High Resolution Sample Images for Land Cover Studies. Part 2 Application to Estimating Land Cover Composition. Remote Sensing of Environment, 2000, 72, 127-138.	11.0	23
268	An Integrated Approach to Wildland Fire Mapping of California, USA Using NOAA/AVHRR Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 139-150.	0.6	23
269	Aerosol optical properties affected by a strong dust storm over central and northern China. Advances in Atmospheric Sciences, 2010, 27, 562-574.	4.3	23
270	Application of spectral analysis techniques to the intercomparison of aerosol data – Part 4: Synthesized analysis of multisensor satellite and ground-based AOD measurements using combined maximum covariance analysis. Atmospheric Measurement Techniques, 2014, 7, 2531-2549.	3.1	23

#	Article	IF	CITATIONS
271	The Relationships Between Cloud Top Radiative Cooling Rates, Surface Latent Heat Fluxes, and Cloudâ€Base Heights in Marine Stratocumulus. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,678.	3.3	23
272	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	23
273	Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmospheric Chemistry and Physics, 2021, 21, 6199-6220.	4.9	23
274	Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring FestivalÂ2019 and enlightenment for regional PM _{2.5} control in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 915-926.	4.9	23
275	Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China. Atmospheric Chemistry and Physics, 2020, 20, 14523-14545.	4.9	23
276	The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 543.	1.6	22
277	A method for the correction of AVHRR onboard IR calibration in the event of short-term radiative contamination. International Journal of Remote Sensing, 2001, 22, 3619-3624.	2.9	22
278	Photometric measurements of spring aerosol optical properties in dust and non-dust periods in China. Atmospheric Environment, 2008, 42, 7981-7987.	4.1	22
279	Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4017-4042.	3.3	22
280	Contrasting Influence of Gobi and Taklimakan Deserts on the Dust Aerosols in Western North America. Geophysical Research Letters, 2019, 46, 9064-9071.	4.0	22
281	The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan Regions across China. Remote Sensing, 2020, 12, 2320.	4.0	22
282	Radiative Characteristics of the Canadian Climate Centre Second-Generation General Circulation Model. Journal of Climate, 1994, 7, 1070-1091.	3.2	21
283	On the angular correction of satellite radiation measurements: The performance of ERBE angular dependence model in the Arctic. Theoretical and Applied Climatology, 1996, 54, 235-248.	2.8	21
284	Estimation of photosynthetically active radiation absorbed at the surface. Journal of Geophysical Research, 1997, 102, 29717-29727.	3.3	21
285	Validation of multi-angle imaging spectroradiometer aerosol products in China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 117.	1.6	21
286	Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere. Advances in Atmospheric Sciences, 2019, 36, 1235-1250.	4.3	21
287	Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China. Journal of Environmental Sciences, 2015, 34, 44-56.	6.1	20
288	Wildfire Impact on Environmental Thermodynamics and Severe Convective Storms. Geophysical Research Letters, 2019, 46, 10082-10093.	4.0	20

#	Article	IF	CITATIONS
289	Hourly PM2.5 Estimates from a Geostationary Satellite Based on an Ensemble Learning Algorithm and Their Spatiotemporal Patterns over Central East China. Remote Sensing, 2019, 11, 2120.	4.0	20
290	Evaluating VIIRS EPS Aerosol Optical Depth in China: An intercomparison against ground-based measurements and MODIS. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 368-377.	2.3	20
291	Efficient data preprocessing, episode classification, and source apportionment of particle number concentrations. Science of the Total Environment, 2020, 744, 140923.	8.0	20
292	Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018–2019. Atmospheric Environment, 2020, 237, 117662.	4.1	20
293	Impacts of cloud microphysics parameterizations on simulated aerosol–cloud interactions for deep convective clouds over Houston. Atmospheric Chemistry and Physics, 2021, 21, 2363-2381.	4.9	20
294	Impact of Clouds on the Shortwave Radiation Budget of the Surface-Atmosphere System for Snow-Covered Surfaces. Journal of Climate, 1994, 7, 579-585.	3.2	19
295	Testing Near-Real Time Detection of Contaminated Pixels in AVHRR Composites. Canadian Journal of Remote Sensing, 1999, 25, 160-170.	2.4	19
296	Interannual changes of active fire detectability in North America from long-term records of the advanced very high resolution radiometer. Journal of Geophysical Research, 2003, 108, .	3.3	19
297	Enhancement of a fire-detection algorithm by eliminating solar contamination effects and atmospheric path radiance: application to MODIS data. International Journal of Remote Sensing, 2011, 32, 6273-6293.	2.9	19
298	Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. International Journal of Remote Sensing, 2012, 33, 7047-7059.	2.9	19
299	Spatio-temporal variability of aerosols over East China inferred by merged visibility-CEOS-Chem aerosol optical depth. Atmospheric Environment, 2016, 132, 111-122.	4.1	19
300	Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13609-13627.	3.3	19
301	Distribution and Variability of Satelliteâ€Derived Signals of Isolated Convection Initiation Events Over Central Eastern China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,357.	3.3	19
302	Aerosol chemistry and particle growth events at an urban downwind site in North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 14637-14651.	4.9	19
303	Satelliteâ€Based Estimation of Cloud Top Radiative Cooling Rate for Marine Stratocumulus. Geophysical Research Letters, 2019, 46, 4485-4494.	4.0	19
304	An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sensing of Environment, 2019, 222, 90-103.	11.0	19
305	The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. Environmental Pollution, 2020, 263, 114507.	7.5	19
306	Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7726-7736.	3.3	18

#	Article	IF	CITATIONS
307	Response of Marine Boundary Layer Cloud Properties to Aerosol Perturbations Associated with Meteorological Conditions from the 19-Month AMF-Azores Campaign. Journals of the Atmospheric Sciences, 2016, 73, 4253-4268.	1.7	18
308	Aerosol optical properties and radiative impacts in the Pearl River Delta region of China during the dry season. Advances in Atmospheric Sciences, 2018, 35, 195-208.	4.3	18
309	The Great Slave Lake PyroCb of 5 August 2014: Observations, Simulations, Comparisons With Regular Convection, and Impact on UTLS Water Vapor. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,332-12,352.	3.3	18
310	Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign. Remote Sensing, 2020, 12, 3823.	4.0	18
311	On the Validation of Satellite-Derived Products for Land Applications. Canadian Journal of Remote Sensing, 1997, 23, 381-389.	2.4	17
312	Cloud optical depths and TOA fluxes: Comparison between satellite and surface retrievals from multiple platforms. Geophysical Research Letters, 2001, 28, 979-982.	4.0	17
313	A Data-Mining Approach for the Validation of Aerosol Retrievals. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 113-117.	3.1	17
314	Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and groundâ€based measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5104-5114.	3.3	17
315	Significant Underestimation in the Optically Based Estimation of the Aerosol First Indirect Effect Induced by the Aerosol Swelling Effect. Geophysical Research Letters, 2018, 45, 5690-5699.	4.0	17
316	Episodes of Warmâ€Air Advection Causing Cloudâ€Surface Decoupling During the MARCUS. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12227-12243.	3.3	17
317	Significantly Enhanced Aerosol CCN Activity and Number Concentrations by Nucleationâ€Initiated Haze Events: A Case Study in Urban Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14102-14113.	3.3	17
318	Aerosol-induced changes in sky polarization pattern: potential hint on applications in polarimetric remote sensing. International Journal of Remote Sensing, 2020, 41, 4963-4980.	2.9	17
319	Impact of Aerosol Vertical Distribution on Aerosol Optical Depth Retrieval from Passive Satellite Sensors. Remote Sensing, 2020, 12, 1524.	4.0	17
320	El Niño–Southern Oscillation correlated aerosol Ångström exponent anomaly over the tropical Pacific discovered in satellite measurements. Journal of Geophysical Research, 2011, 116, .	3.3	16
321	Cloud vertical distribution from radiosonde, remote sensing, and model simulations. Climate Dynamics, 2014, 43, 1129-1140.	3.8	16
322	Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences, 2014, 31, 593-603.	4.3	16
323	Retrieval of Cloud Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6082-6098.	3.3	16
324	Enhanced Aerosol Estimations From Suomi-NPP VIIRS Images Over Heterogeneous Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9534-9543.	6.3	16

#	Article	IF	CITATIONS
325	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	9.5	16
326	Changes in Air Pollution Following the COVID-19 Epidemic in Northern China: The Role of Meteorology. Frontiers in Environmental Science, 2021, 9, .	3.3	16
327	Use of ScaRaB Measurements for Validating a GOES-Based TOA Radiation Product. Journal of Applied Meteorology and Climatology, 1998, 37, 591-605.	1.7	15
328	Inference of Cloud Optical Depth from Aircraft-Based Solar Radiometric Measurements. Journals of the Atmospheric Sciences, 2002, 59, 2093-2111.	1.7	15
329	Long-term global earth surface ultraviolet radiation exposure derived from ISCCP and TOMS satellite measurements. Agricultural and Forest Meteorology, 2003, 120, 51-68.	4.8	15
330	Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China. Journal of Geophysical Research, 2010, 115, .	3.3	15
331	Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method. Atmospheric Research, 2018, 202, 148-155.	4.1	15
332	Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data. Atmospheric Chemistry and Physics, 2018, 18, 3289-3298.	4.9	15
333	Variability of Major Aerosol Types in China Classified Using AERONET Measurements. Remote Sensing, 2019, 11, 2334.	4.0	15
334	Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China. Remote Sensing, 2020, 12, 785.	4.0	15
335	Aircraft measurements of SO2 and aerosols over northeastern China: Vertical profiles and the influence of weather on air quality. Atmospheric Environment, 2012, 62, 492-501.	4.1	14
336	Uncertainty Evaluation of an In-Flight Absolute Radiometric Calibration Using a Statistical Monte Carlo Method. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2925-2934.	6.3	14
337	Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast. Atmospheric Chemistry and Physics, 2017, 17, 13967-13982.	4.9	14
338	Developing Daily Cloudâ€Free Snow Composite Products From MODIS and IMS for the Tienshan Mountains. Earth and Space Science, 2019, 6, 266-275.	2.6	14
339	Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8. Remote Sensing of Environment, 2020, 251, 112093.	11.0	14
340	Intensified modulation of winter aerosol pollution in China by El Niño with short duration. Atmospheric Chemistry and Physics, 2021, 21, 10745-10761.	4.9	14
341	The Dependence of TOA Reflectance Anisotropy on Cloud Properties Inferred from ScaRaB Satellite Data. Journal of Applied Meteorology and Climatology, 2000, 39, 2480-2493.	1.7	13
342	Analysis of surface and aerosol polarized reflectance for aerosol retrievals from polarized remote sensing in PRD urban region. Atmospheric Environment, 2011, 45, 6607-6612.	4.1	13

#	Article	IF	CITATIONS
343	First surface-based estimation of the aerosol indirect effect over a site in southeastern China. Advances in Atmospheric Sciences, 2018, 35, 169-181.	4.3	13
344	A More General Paradigm for Understanding the Decoupling of Stratocumulusâ€Topped Boundary Layers: The Importance of Horizontal Temperature Advection. Geophysical Research Letters, 2020, 47, e2020GL087697.	4.0	13
345	Examining the Relationship between Cloud and Radiation Quantities Derived from Satellite Observations and Model Calculations. Journal of Climate, 2000, 13, 3842-3859.	3.2	12
346	The spatial–temporal variations in optical properties of atmosphere aerosols derived from AERONET dataset over China. Meteorology and Atmospheric Physics, 2013, 122, 65-73.	2.0	12
347	Estimating the Decoupling Degree of Subtropical Marine Stratocumulus Decks From Satellite. Geophysical Research Letters, 2018, 45, 12,560.	4.0	12
348	Distinct Ultrafine―and Accumulationâ€Mode Particle Properties in Clean and Polluted Urban Environments. Geophysical Research Letters, 2019, 46, 10918-10925.	4.0	12
349	Interdecadal Variation of Precipitation over the Hengduan Mountains during Rainy Seasons. Journal of Climate, 2019, 32, 3743-3760.	3.2	12
350	Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing. Atmospheric Environment, 2021, 262, 118652.	4.1	12
351	A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physicalÂand deep learning approaches. Earth System Science Data, 2022, 14, 1193-1213.	9.9	12
352	Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China. Atmospheric Chemistry and Physics, 2022, 22, 7273-7285.	4.9	12
353	Chiral constituent quark model study of the process γp → ηp ⋆. European Physical Journal A, 2008, 35, 321-324.	2.5	11
354	Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project. Atmospheric Chemistry and Physics, 2019, 19, 9515-9529.	4.9	11
355	Large Wildfires in the Western United States Exacerbated by Tropospheric Drying Linked to a Multiâ€Decadal Trend in the Expansion of the Hadley Circulation. Geophysical Research Letters, 2020, 47, e2020GL087911.	4.0	11
356	Synergy of Satellite―and Groundâ€Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031884.	3.3	11
357	In-flight absolute calibration of an airborne wide-view multispectral imager using a reflectance-based method and its validation. International Journal of Remote Sensing, 2013, 34, 1995-2005.	2.9	10
358	Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012. Journals of the Atmospheric Sciences, 2016, 73, 4469-4485.	1.7	10
359	Long-term trends of global maximum atmospheric mixed layer heights derived from radiosonde measurements. Environmental Research Letters, 2020, 15, 034054.	5.2	10
360	An Evaluation of Kernel-driven Bidirectional Models Using PARABOLA Measurements. Canadian Journal of Remote Sensing, 1997, 23, 120-130.	2.4	9

#	Article	IF	CITATIONS
361	The effect and correction of aerosol forward scattering on retrieval of aerosol optical depth from Sun photometer measurements. Geophysical Research Letters, 2012, 39, .	4.0	9
362	Revisiting AVHRR tropospheric aerosol trends using principal component analysis. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3309-3320.	3.3	9
363	A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction. Energies, 2016, 9, 894.	3.1	9
364	Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system. Climate Dynamics, 2017, 48, 1069-1087.	3.8	9
365	Evaluation of hygroscopic cloud seeding in liquid-water clouds: a feasibility study. Atmospheric Chemistry and Physics, 2019, 19, 14967-14977.	4.9	9
366	A 17-year climatology of temperature inversions above clouds over the ARM SGP site: The roles of cloud radiative effects. Atmospheric Research, 2020, 237, 104810.	4.1	9
367	Regional Scale Temperature Rather than Precipitation Determines Vessel Features in Earlywood of Manchurian Ash in Temperate Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005955.	3.0	9
368	Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part II: Continental Conditions. Journals of the Atmospheric Sciences, 2020, 77, 1313-1328.	1.7	9
369	New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. Environmental Pollution, 2021, 276, 116707.	7.5	9
370	The different sensitivities of aerosol optical properties to particle concentration, humidity, and hygroscopicity between the surface level and the upper boundary layer in Guangzhou, China. Science of the Total Environment, 2022, 803, 150010.	8.0	9
371	Identification of clear and cloudy pixels at high latitudes from AVHRR radiances. International Journal of Remote Sensing, 1993, 14, 2005-2024.	2.9	8
372	Anisotropic reflection of UV radiation at the top of the atmosphere: Characteristics and models obtained from Meteor 3/TOMS. Journal of Geophysical Research, 2001, 106, 4741-4755.	3.3	8
373	Retrieval of Surface Solar Radiation Budget under Ice Cloud Sky: Uncertainty Analysis and Parameterization. Journals of the Atmospheric Sciences, 2002, 59, 2951-2965.	1.7	8
374	Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical properties and radiative forcing over the eastern United States. Journal of Geophysical Research, 2005, 110, .	3.3	8
375	Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations. Advances in Atmospheric Sciences, 2017, 34, 306-320.	4.3	8
376	Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system. Climate Dynamics, 2017, 49, 3905-3921.	3.8	8
377	Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades. Atmospheric Chemistry and Physics, 2018, 18, 12531-12550.	4.9	8
378	Retrieval of aerosol profiles by Raman lidar with dynamic determination of the lidar equation reference height. Atmospheric Environment, 2019, 199, 252-259.	4.1	8

#	Article	IF	CITATIONS
379	Sources of black carbon during severe haze events in the Beijing–Tianjin–Hebei region using the adjoint method. Science of the Total Environment, 2020, 740, 140149.	8.0	8
380	Profiling Aerosol Liquid Water Content Using a Polarization Lidar. Environmental Science & Technology, 2020, 54, 3129-3137.	10.0	8
381	Lightning Enhancement in Moist Convection With Smokeâ€Laden Air Advected From Australian Wildfires. Geophysical Research Letters, 2021, 48, e2020GL092355.	4.0	8
382	Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China. Atmospheric Chemistry and Physics, 2022, 22, 6773-6786.	4.9	8
383	The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 543-554.	1.6	7
384	Stratospheric Satellites for Earth Observations. Bulletin of the American Meteorological Society, 2009, 90, 1109-1119.	3.3	7
385	Cloud-base distribution and cirrus properties based on micropulse lidar measurements at a site in southeastern China. Advances in Atmospheric Sciences, 2015, 32, 991-1004.	4.3	7
386	The Evolution of Springtime Water Vapor Over Beijing Observed by a High Dynamic Raman Lidar System: Case Studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 1715-1726.	4.9	7
387	Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols. Atmospheric Chemistry and Physics, 2018, 18, 13-29.	4.9	7
388	An Improved Global Land Anthropogenic Aerosol Product Based on Satellite Retrievals From 2008 to 2016. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 944-948.	3.1	7
389	Subâ€Cloud Turbulence Explains Cloudâ€Base Updrafts for Shallow Cumulus Ensembles: First Observational Evidence. Geophysical Research Letters, 2021, 48, e2020GL091881.	4.0	7
390	Variability of surface aerosol properties at an urban site in Beijing based on two years of in-situ measurements. Atmospheric Research, 2021, 256, 105562.	4.1	7
391	Extending the EOS Long-Term PM _{2.5} Data Records Since 2013 in China: Application to the VIIRS Deep Blue Aerosol Products. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	7
392	High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling. Science in China Series D: Earth Sciences, 2009, 52, 1641-1649.	0.9	6
393	An optimal fitting approach to improve the GISS ModelE aerosol optical property parameterization using AERONET data. Journal of Geophysical Research, 2010, 115, .	3.3	6
394	Measurement report: The effect of aerosol chemical composition on light scattering due to the hygroscopic swelling effect. Atmospheric Chemistry and Physics, 2021, 21, 9977-9994.	4.9	6
395	Vertical distributions of aerosol microphysical and optical properties based on aircraft measurements made over the Loess Plateau in China. Atmospheric Environment, 2022, 270, 118888.	4.1	6
396	Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data. Atmospheric Chemistry and Physics, 2022, 22, 1453-1466.	4.9	6

#	Article	IF	CITATIONS
397	Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China. Remote Sensing, 2022, 14, 1916.	4.0	6
398	Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3920-3928.	3.3	5
399	Climatology of Cloudâ€Top Radiative Cooling in Marine Shallow Clouds. Geophysical Research Letters, 2021, 48, e2021GL094676.	4.0	5
400	Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere. Atmospheric Chemistry and Physics, 2021, 21, 14293-14308.	4.9	5
401	An airborne study of the aerosol effect on the dispersion of cloud droplets in a drizzling marine stratocumulus cloud over eastern China. Atmospheric Research, 2022, 265, 105885.	4.1	5
402	Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 models. Journal of Climate, 2022, 35, 3007-3019.	3.2	5
403	Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Vertical Distribution Based on CMIP6 models. Journal of Climate, 2022, 35, 3021-3035.	3.2	5
404	Analysis of aerosol particle number size distribution and source attribution at three megacities in China. Atmospheric Environment, 2022, 279, 119114.	4.1	5
405	Long-term monitoring of surface reflectance, NDVI, and clouds from space: What contribution can we expect due to the effect of instrument spectral response variations?. , 2002, , .		4
406	A study of the heat transfer characteristics of a laser rod in a concentric circular tube. Applied Physics B: Lasers and Optics, 2007, 87, 301-309.	2.2	4
407	Retrieval of aerosol optical thickness using MODIS 500 × 500m ² , a study in Hong Kong and Pearl River delta region. , 2008, , .		4
408	Extension and statistical analysis of the GACP aerosol optical thickness record. Atmospheric Research, 2015, 164-165, 268-277.	4.1	4
409	An Intercomparison of the Spatiotemporal Variability of Satellite- and Ground-Based Cloud Datasets Using Spectral Analysis Techniques. Journal of Climate, 2015, 28, 5716-5736.	3.2	4
410	Spectral and diurnal temporal suitability of GOES Advanced Baseline Imager (ABI) reflectance for burned area mapping. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102271.	2.8	4
411	A Large Impact of Cooking Organic Aerosol (COA) on Particle Hygroscopicity and CCN Activity in Urban Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033628.	3.3	4
412	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	8.0	4
413	Competing aerosol effects in triggering deep convection over the Indian Region. Climate Dynamics, 2021, 56, 1815-1835.	3.8	4
414	BRDF/Albedo retrievals from the Terra and Aqua MODIS systems at 500-m spatial resolution and 10-day		3

#	Article	IF	CITATIONS
415	The Rapid Growth of Publications by Atmospheric and Oceanic Scientists of Chinese Origin. Bulletin of the American Meteorological Society, 2007, 88, 846-848.	3.3	3
416	Examination of effects of aerosols on a pyroCb and their dependence on fire intensity and aerosol perturbation. Atmospheric Chemistry and Physics, 2020, 20, 3357-3371.	4.9	3
417	Idealized Large-Eddy Simulations of Stratocumulus Advecting over Cold Water. Part I: Boundary Layer Decoupling. Journals of the Atmospheric Sciences, 2021, 78, 4089-4102.	1.7	3
418	Microscopic Boiling of Liquid Nitrogen Induced by a Pulsed Laser Irradiation. Experimental Heat Transfer, 2008, 21, 237-256.	3.2	2
419	Involvement of oxidative stress and autointoxication in leaf senescence of <i>Amomum villosum</i> . Plant Biosystems, 2011, 145, 762-769.	1.6	2
420	Characteristics of atmospheric fungi in particle growth events along with new particle formation in the central North China Plain. Science of the Total Environment, 2019, 683, 389-398.	8.0	2
421	Contrasting aerosol growth potential in the northern and central-southern regions of the North China Plain: Implications for combating regional pollution. Atmospheric Environment, 2021, , 118723.	4.1	2
422	Reconstruction of maximum temperature on Zhegu Mountain, western Sichuan Plateau (China). Climate Research, 2020, 81, 1-14.	1.1	2
423	Vertical Distributions of Aerosol and Cloud Microphysical Properties and the Aerosol Impact on a Continental Cumulus Cloud Based on Aircraft Measurements From the Loess Plateau of China. Frontiers in Environmental Science, 2022, 9, .	3.3	2
424	Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing. Atmospheric Chemistry and Physics, 2022, 22, 2293-2307.	4.9	2
425	A New Algorithm for Retrieving Aerosol Optical Thickness Using TERRA/MODIS Satellite Images. Annals of CIS, 2008, 14, 86-91.	3.1	1
426	Diagnosis and improvement of cloud parameterization schemes in NCEP/GFS using multiple satellite products. , 2013, , .		1
427	Ultrahigh-Resolution (250 m) Regional Surface PM _{2.5} Concentrations Derived First From MODIS Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	1
428	Role of surface latent heat flux in shallow cloud transitions: A mechanism-denial LES study. Journals of the Atmospheric Sciences, 2021, , .	1.7	1
429	Aerosol and monsoon climate interactions over Asia. , 2016, 54, 866.		1
430	Intensified Investigations of East Asian Aerosols and Climate. Eos, 2020, 101, .	0.1	1
431	LiDAR-Based Remote Sensing of the Vertical Profile of Aerosol Liquid Water Content Using a Machine-Learning Model. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	6.3	1
432	National Scale Forest Information Extraction from Coarse Resolution Satellite Data, Part 2. , 2003, , 359-387.		0

#	Article	IF	CITATIONS
433	A general two-stream algorithm for retrieving spectral surface albedo. Canadian Journal of Remote Sensing, 2005, 31, 391-399.	2.4	0
434	Appreciation of peer reviewers for 2015. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4335-4385.	3.3	0
435	Responses of subshrub sagebrush rangeland in North-Western China to changes in livestock numbers and rainfall over 10 years (2004–2013). Arid Land Research and Management, 2019, 33, 212-233.	1.6	0
436	Facilitating International Collaboration on Climate Change Research. Bulletin of the American Meteorological Society, 2020, 101, E650-E654.	3.3	0
437	Satellite-Based High-Spatial-Resolution and High-Quality Fine Particulate Matters Across China. , 2020, , .		0