
Manuel Fernandez-Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8314116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biology and Biochemistry, 2014, 69, 223-233.	8.8	121
2	Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1207-1217.	1.7	110
3	Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proceedings of the United States of America, 1998, 95, 12724-12728.	7.1	105
4	The rhizosphere microbiome of burned holm-oak: potential role of the genus Arthrobacter in the recovery of burned soils. Scientific Reports, 2017, 7, 6008.	3.3	88
5	Thirteen years of continued application of composted organic wastes in a vineyard modify soil quality characteristics. Soil Biology and Biochemistry, 2015, 90, 241-254.	8.8	86
6	Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome, 2020, 8, 11.	11.1	78
7	Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA. Journal of Bacteriology, 1993, 175, 5403-5410.	2.2	74
8	Metagenomic Assessment of the Potential Microbial Nitrogen Pathways in the Rhizosphere of a Mediterranean Forest After a Wildfire. Microbial Ecology, 2015, 69, 895-904.	2.8	68
9	Fucosylation and arabinosylation of Nod factors in Azorhizobium caulinodans : involvement of nolK nodZ as well as noeC and/or downstream genes. Molecular Microbiology, 1996, 21, 409-419.	2.5	66
10	Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment, 2017, 584-585, 838-848.	8.0	65
11	Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Scientific Reports, 2019, 9, 20423.	3.3	65
12	Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1687-1693.	1.7	58
13	Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing. Frontiers in Plant Science, 2016, 7, 1016.	3.6	58
14	The RmInt1 group II intron has two different retrohoming pathways for mobility using predominantly the nascent lagging strand at DNA replication forks for priming. Nucleic Acids Research, 2004, 32, 2880-2888.	14.5	54
15	Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biology and Biochemistry, 2017, 109, 176-187.	8.8	50
16	Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard. European Journal of Soil Science, 2015, 66, 802-812.	3.9	49
17	The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Systematic and Applied Microbiology, 2014, 37, 177-185.	2.8	45
18	Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics International Journal of Systematic and Evolutionary Microbiology, 2002. 52. 1687-1693.	1.7	42

#	Article	IF	CITATIONS
19	Changes in soil bacterial community triggered by droughtâ€induced gap succession preceded changes in soil C stocks and quality. Ecology and Evolution, 2012, 2, 3016-3031.	1.9	39
20	Role of nodl and nodj in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Molecular Microbiology, 1996, 20, 993-1000.	2.5	38
21	Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant and Soil, 2012, 357, 275-288.	3.7	38
22	Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS ONE, 2019, 14, e0214422.	2.5	31
23	Identification and characterization of bacterial class E group II introns. Gene, 2002, 299, 245-250.	2.2	30
24	Dispersal and Evolution of the Sinorhizobium meliloti Group II RmInt1 Intron in Bacteria that Interact with Plants. Molecular Biology and Evolution, 2005, 22, 1518-1528.	8.9	27
25	The Banana Root Endophytome: Differences between Mother Plants and Suckers and Evaluation of Selected Bacteria to Control Fusarium oxysporum f.sp. cubense. Journal of Fungi (Basel, Switzerland), 2021, 7, 194.	3.5	26
26	Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Scientific Reports, 2019, 9, 1695.	3.3	23
27	Characterisation of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiology Ecology, 1999, 28, 169-176.	2.7	22
28	Rhizosphere-Bacterial Community in Eperua falcata (Caesalpiniaceae) a Putative Nitrogen-Fixing Tree from French Guiana Rainforest. Microbial Ecology, 2007, 53, 317-327.	2.8	20
29	Use of RmInt1, a Group IIB Intron Lacking the Intron-Encoded Protein Endonuclease Domain, in Gene Targeting. Applied and Environmental Microbiology, 2011, 77, 854-861.	3.1	20
30	Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Frontiers in Microbiology, 2020, 11, 2073.	3.5	19
31	Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil. FEMS Microbiology Ecology, 2014, 90, 54-67.	2.7	18
32	Involvement of the metabolically active bacteria in the organic matter degradation during olive mill waste composting. Science of the Total Environment, 2021, 789, 147975.	8.0	18
33	Holm oak decline and mortality exacerbates drought effects on soil biogeochemical cycling and soil microbial communities across a climatic gradient. Soil Biology and Biochemistry, 2020, 149, 107921.	8.8	16
34	Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils. Agriculture, Ecosystems and Environment, 2017, 238, 114-127.	5.3	15
35	Diversity of group II introns in the genome of Sinorhizobium meliloti strain 1021: splicing and mobility of RmInt1. Molecular Genetics and Genomics, 2003, 268, 628-636.	2.1	14
36	The Soil Microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): Comparing Unburned and Burned Habitats after a Wildfire. Forests, 2019, 10, 1051.	2.1	14

#	Article	IF	CITATIONS
37	Purification and characterization of the membrane-bound nitrate reductase isoenzymes ofBradyrhizobium japonicum. FEBS Letters, 1996, 392, 1-5.	2.8	12
38	Two differentially regulated nitrate reductases required for nitrate-dependent, microaerobic growth of Bradyrhizobium japonicum. Archives of Microbiology, 1994, 162, 310-315.	2.2	10
39	Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Systematic and Applied Microbiology, 2017, 40, 92-101.	2.8	10
40	The endosphere bacteriome of diseased and healthy tomato plants. Archives of Microbiology, 2020, 202, 202, 2629-2642.	2.2	10
41	Comparative study of neighboring Holm oak and olive trees-belowground microbial communities subjected to different soil management. PLoS ONE, 2020, 15, e0236796.	2.5	10
42	Changes in the glycosylation pattern at the reducing end of azorhizobial Nod factors affect nodulation efficiency. FEMS Microbiology Letters, 1998, 158, 237-242.	1.8	9
43	Soluble and membrane-bound nitrate reductase from Bradyrhizobium japonicum bacteroids. Plant Physiology and Biochemistry, 1998, 36, 279-283.	5.8	9
44	Taxonomic and Functional Diversity of a Quercus pyrenaica Willd. Rhizospheric Microbiome in the Mediterranean Mountains. Forests, 2017, 8, 390.	2.1	8
45	Exploring the effect of composting technologies on the recovery of hydrocarbon contaminated soil post chemical oxidative treatment. Applied Soil Ecology, 2020, 150, 103459.	4.3	8
46	Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 2021, 19, 4777-4789.	4.1	8
47	Changes in the glycosylation pattern at the reducing end of azorhizobial Nod factors affect nodulation efficiency. FEMS Microbiology Letters, 1998, 158, 237-242.	1.8	6
48	Correlating the above- and belowground genotype of Pinus pinaster trees and rhizosphere bacterial communities under drought conditions. Science of the Total Environment, 2022, 832, 155007.	8.0	6
49	Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region. SpringerPlus, 2015, 4, 259.	1.2	5
50	The early events underlying genome evolution in a localized Sinorhizobium meliloti population. BMC Genomics, 2016, 17, 556.	2.8	5
51	Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Frontiers in Microbiology, 2022, 13, 809126.	3.5	5
52	Whole-Genome Sequences of Two Arthrobacter Strains Isolated from a Holm Oak Rhizosphere Affected by Wildfire. Genome Announcements, 2018, 6, .	0.8	4
53	Characterisation of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiology Ecology, 1999, 28, 169-176.	2.7	3
54	Complete Genome Sequence of Sinorhizobium meliloti Strain AK21, a Salt-Tolerant Isolate from the Aral Sea Region. Microbiology Resource Announcements, 2020, 9, .	0.6	1

#	Article	IF	CITATIONS
55	Structure—Function Relationship of Nod Factors Synthesized by Azorhizobium caulinodans. Current Plant Science and Biotechnology in Agriculture, 1998, , 250-250.	0.0	0
56	Title is missing!. , 2020, 15, e0236796.		0
57	Title is missing!. , 2020, 15, e0236796.		0
58	Title is missing!. , 2020, 15, e0236796.		0
59	Title is missing!. , 2020, 15, e0236796.		0