Francisco Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	METATOOL: for studying metabolic networks. Bioinformatics, 1999, 15, 251-257.	4.1	337
2	Singlet Oxygen-Mediated DNA Photocleavage with Ru(II) Polypyridyl Complexes. Journal of Physical Chemistry B, 2002, 106, 4010-4017.	2.6	103
3	Theoretical Approaches to the Evolutionary Optimization of Glycolysis. Chemical Analysis. FEBS Journal, 1997, 244, 527-543.	0.2	72
4	Theoretical Approaches to the Evolutionary Optimization of Glycolysis. Thermodynamic and Kinetic Constraints. FEBS Journal, 1997, 243, 191-201.	0.2	70
5	Optimization of Metabolism: The Evolution of Metabolic Pathways Toward Simplicity Through the Game of the Pentose Phosphate Cycle. Journal of Theoretical Biology, 1994, 166, 201-220.	1.7	54
6	A Simple Self-Maintaining Metabolic System: Robustness, Autocatalysis, Bistability. PLoS Computational Biology, 2010, 6, e1000872.	3.2	52
7	Structural studies on histones H1. Circular dichroism and difference spectroscopy of the histones H1 and their trypsin-resistant cores from calf thymus and from the fruit fly Ceratitis capitata. Biochemistry, 1980, 19, 4080-4087.	2.5	45
8	Generalization of the Theory of Transition Times in Metabolic Pathways: A Geometrical Approach. Biophysical Journal, 1999, 77, 23-36.	0.5	44
9	Condensation of DNA by the C-terminal domain of histone H1 A circular dichroism study. Biophysical Chemistry, 1985, 22, 125-129.	2.8	42
10	A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time-resolved Luminescence¶. Photochemistry and Photobiology, 2000, 72, 28.	2.5	42
11	From prebiotic chemistry to cellular metabolism—The chemical evolution of metabolism before Darwinian natural selection. Journal of Theoretical Biology, 2008, 252, 505-519.	1.7	40
12	Structural analyses of a hypothetical minimal metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1751-1762.	4.0	39
13	Purification of the histone H1 from the fruit flyCeratitis capitata. FEBS Letters, 1977, 78, 317-320.	2.8	38
14	Optimization of glycolysis: A new look at the efficiency of energy coupling. Biochemical Education, 1997, 25, 204-205.	0.1	34
15	A SOM prototype-based cluster analysis methodology. Expert Systems With Applications, 2017, 88, 14-28.	7.6	34
16	A necessary and sufficient condition for the existence of Orlovsky's choice set. Fuzzy Sets and Systems, 1988, 26, 121-125.	2.7	30
17	Complex dynamics of a catalytic network having faulty replication into error-species. Physica D: Nonlinear Phenomena, 1993, 63, 21-40.	2.8	29
18	Optimization of glycolysis: new discussions. Biochemical Education, 1999, 27, 12-13.	0.1	29

Francisco Montero

#	Article	IF	CITATIONS
19	Network organization of cell metabolism: monosaccharide interconversion. Biochemical Journal, 1997, 324, 103-111.	3.7	28
20	Simulating a Model of Metabolic Closure. Biological Theory, 2013, 8, 383-390.	1.5	24
21	Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach. PLoS ONE, 2012, 7, e39480.	2.5	23
22	The relationship between the error catastrophe, survival of the flattest, and natural selection. BMC Evolutionary Biology, 2011, 11, 2.	3.2	22
23	The Metabolic Productivity of the Cell Factory. Journal of Theoretical Biology, 1996, 182, 317-325.	1.7	21
24	A model of an autocatalytic network formed by error-prone self-replicative species. Bulletin of Mathematical Biology, 1993, 55, 385-415.	1.9	20
25	Effect of lethality on the extinction and on the error threshold of quasispecies. Journal of Theoretical Biology, 2010, 262, 733-741.	1.7	20
26	Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti. BMC Systems Biology, 2013, 7, 114.	3.0	20
27	Cooperative interaction of the C-terminal domain of histone H1 with DNA. Biophysical Chemistry, 1991, 39, 145-152.	2.8	19
28	The structural design of glycolysis: an evolutionary approach. Biochemical Society Transactions, 1999, 27, 294-298.	3.4	19
29	Influence of the hypercycle on the error threshold: A stochastic approach. Journal of Theoretical Biology, 1988, 134, 431-443.	1.7	18
30	Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection. Current Topics in Microbiology and Immunology, 2015, 392, 161-179.	1.1	18
31	Influence of the hypercyclic organization on the error threshold. Journal of Theoretical Biology, 1987, 127, 393-402.	1.7	17
32	Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality. Frontiers in Microbiology, 2016, 7, 1553.	3.5	17
33	C1 Proteins: a Class of High-Mobility-Group Non-histone Chromosomal Proteins from the Fruit Fly Ceratitis capitata. FEBS Journal, 1982, 123, 165-170.	0.2	16
34	Histones from the Fruit Fly Ceratitis capitata. Isolation and Characterization. FEBS Journal, 1974, 48, 53-61.	0.2	15
35	Influence of External Fluctuations on a Hypercycle Formed by Two Kinetically Indistinguishable Species. Journal of Theoretical Biology, 1993, 165, 553-575.	1.7	15
36	Rearrangement of nucleosomal components by modification of histone amino groups. Structural role of lysine residues. Biochemistry, 1984, 23, 4280-4284.	2.5	14

Francisco Montero

#	Article	IF	CITATIONS
37	Interaction with DNA of Photoactive Viologens Based on the 6-(2-Pyridinium)phenanthridinium Structure. Journal of Biomolecular Structure and Dynamics, 1995, 12, 827-846.	3.5	14
38	Size matters: Influence of stochasticity on the self-maintenance of a simple model of metabolic closure. Journal of Theoretical Biology, 2012, 300, 143-151.	1.7	12
39	Studies on evolutionary and selective properties of hypercycles using a Monte Carlo method. Journal of Molecular Evolution, 1987, 26, 294-300.	1.8	11
40	DNA photocleavage by novel intercalating 6-(2-pyridinium)phenanthridinium viologens. FEBS Letters, 1995, 374, 426-428.	2.8	11
41	Contribution of histones H2A and H2B to the folding of nucleosomal DNA. Biochemistry, 1984, 23, 4285-4289.	2.5	10
42	Influence of the N- and C-terminal tails on the structure of the globular head of histone H1. Biochemical and Biophysical Research Communications, 1982, 107, 842-847.	2.1	8
43	Nature lessons: The whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics. Journal of Theoretical Biology, 2016, 407, 303-317.	1.7	8
44	Stoichiometric analysis of self-maintaining metabolisms. Journal of Theoretical Biology, 2008, 252, 427-432.	1.7	7
45	Tools-4-Metatool (T4M): Online suite of web-tools to process stoichiometric network analysis data from Metatool. BioSystems, 2011, 105, 169-172.	2.0	7
46	Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach. PLoS ONE, 2015, 10, e0143626.	2.5	7
47	Effects of sodium dodecyl sulfate on the structure of histones H1. The Protein Journal, 1984, 3, 455-463.	1.1	6
48	Study of an error-prone hypercycle formed from two kinetically distinguishable species. Biophysical Chemistry, 1991, 40, 43-57.	2.8	6
49	Stereospecific DNA Binding of Luminescent Atropisomeric Viologens. Biochemical and Biophysical Research Communications, 1995, 214, 716-722.	2.1	6
50	Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium. Frontiers in Microbiology, 2017, 8, 2290.	3.5	5
51	Dissociation of single-stranded DNA from nucleosomes following modification with acetic anhydride. Biochemical and Biophysical Research Communications, 1984, 121, 907-914.	2.1	4
52	An algorithm to study the evolution and selection of auto replicative molecules. Computers & Chemistry, 1984, 8, 303-307.	1.2	3
53	Relaxation of chromatin structure upon removal of histones H2A and H2B. FEBS Letters, 1984, 172, 70-74.	2.8	3
54	Kinetic analysis of Ï^-DNA structure formation induced by histone H1 and its C-terminal domain. Biophysical Chemistry, 1989, 33, 133-141.	2.8	3

FRANCISCO MONTERO

#	Article	IF	CITATIONS
55	Thermal denaturation profiles of deoxypolynucleotide-destabilizer ligand complexes: Semiempirical studies. Archives of Biochemistry and Biophysics, 1991, 290, 133-142.	3.0	3
56	Channelling and evolution of metabolism. Journal of Theoretical Biology, 1991, 152, 77-79.	1.7	3
57	Periodic Signal Transmission through Metabolic Pathways with Michaelian Kinetics. Journal of Physical Chemistry B, 2002, 106, 5536-5542.	2.6	3
58	Stoichiometric properties of the non oxidative phase of the pentose phosphate cycle. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 1865-1874.	1.1	2
59	Kinetic and thermodynamic constraints for the structural design of glycolysis. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 1793-1804.	1.1	2
60	A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time-resolved Luminescence ¶. Photochemistry and Photobiology, 2000, 72, 28-34.	2.5	2
61	Characteristic time in quasispecies evolution. Journal of Theoretical Biology, 2012, 303, 25-32.	1.7	2
62	High mobility group non-histone chromosomal proteins from the fruit fly Ceratitis capitata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1982, 72, 531-535.	0.2	1
63	Modification of the lysine residues of histones H1 and H5: Effects on structure and on the binding to chromatin. Molecular Biology Reports, 1985, 10, 147-151.	2.3	1
64	Aggregation of the histone h1 from the fruit fly Ceratitis capitata through disulphide bridges. Studies on their complexes with DNA. International Journal of Biochemistry & Cell Biology, 1985, 17, 665-675.	0.5	1
65	Compositional and structural studies of a fraction of the fruit fly Ceratitis capitata mononucleosomes, highly enriched in non-histone proteins. International Journal of Biochemistry & Cell Biology, 1986, 18, 901-908.	0.5	1
66	Transition state of the glycolytic pathway under fdp saturating conditions: Experimental studies and a theoretical model. International Journal of Biochemistry & Cell Biology, 1988, 20, 421-426.	0.5	1
67	Thermal denaturation profiles of deoxypolynucleotide-ligand complexes: Semiempirical studies. Archives of Biochemistry and Biophysics, 1989, 268, 426-437.	3.0	1
68	Transient times in linear metabolic pathways under constant affinity constraints. Biochemical Journal, 1997, 327, 493-498.	3.7	1
69	Sequence distribution and intercooperativity detection for two ligands simultaneously binding to DNA. Biopolymers, 2001, 58, 562-576.	2.4	1
70	Phenomenological Definition of Response Times with Application to Metabolic Reactions. Journal of Theoretical Biology, 2003, 221, 475-489.	1.7	1
71	The Advantage of Arriving First: Characteristic Times in Finite Size Populations of Error-Prone Replicators. PLoS ONE, 2013, 8, e83142.	2.5	1
72	Interactions of the high-mobility-group-like Ceratitis capitata C1 proteins with DNA. FEBS Journal, 1987, 165, 309-314.	0.2	0

#	Article	IF	CITATIONS
73	Interaction of the c-terminal domain of the histone H1 with DNA. Biochemical Pharmacology, 1988, 37, 1841-1842.	4.4	0
74	Equivalence of branched and unbranched Michaelian pathways concerning periodic signal transmission. Molecular Biology Reports, 2002, 29, 63-66.	2.3	0