Lucia Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313964/publications.pdf

Version: 2024-02-01

117453 102304 4,701 89 34 66 h-index citations g-index papers 93 93 93 7489 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. Nanoscale, 2022, 14, 2091-2118.	2.8	17
2	Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions. Journal of Colloid and Interface Science, 2022, 613, 447-460.	5.0	10
3	Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. Nanoscale, 2022, 14, 5716-5724.	2.8	9
4	Iron Speciation in Animal Tissues Using AC Magnetic Susceptibility Measurements: Quantification of Magnetic Nanoparticles, Ferritin, and Other Iron-Containing Species. ACS Applied Bio Materials, 2022, 5, 1879-1889.	2.3	6
5	Iron–Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy. Pharmaceutics, 2022, 14, 636.	2.0	13
6	Ultrasmall Manganese Ferrites for In Vivo Catalase Mimicking Activity and Multimodal Bioimaging. Small, 2022, 18, e2106570.	5.2	23
7	Triphenylene-ethylammonium tetrachlorometallate salts: multicolumnar mesophases, thermochromism and Langmuir films. Journal of Materials Chemistry C, 2022, 10, 9222-9231.	2.7	4
8	Tunable Control of the Structural Features and Related Physical Properties of Mn _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ Nanoparticles: Implication on Their Heating Performance by Magnetic Hyperthermia. Journal of Physical Chemistry C, 2022, 126, 10110-10128.	1.5	8
9	Synthesis and Applications of Anisotropic Magnetic Iron Oxide Nanoparticles. , 2021, , 65-89.		0
10	Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution. ACS Applied Materials & Emp; Interfaces, 2021, 13, 12982-12996.	4.0	34
11	Novel, simple, and environmentally safe method for wastewater pollutant removal. Journal of Water Process Engineering, 2021, 42, 102181.	2.6	1
12	HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45279-45290.	4.0	12
13	New insights into the structural analysis of maghemite and (MFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$, M = Co,) Tj ETQq1 Frontiers, 2020, 4, 3063-3073.		314 rgBT / <mark>O</mark> \ 22
14	The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43474-43487.	4.0	36
15	Smartphoneâ€Based Colorimetric Method to Quantify Iron Concentration and to Determine the Nanoparticle Size from Suspensions of Magnetic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000032.	1.2	6
16	The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 2020, 578, 510-521.	5.0	21
17	Toxicity and biodegradation of zinc ferrite nanoparticles in Xenopus laevis. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	6
18	Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with \hat{l}_{\pm} _{<i>\vee/i>} \hat{l}_{2} ₃ -Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26648-26663.	4.0	52

#	Article	IF	Citations
19	A Roadmap to the Standardization of In Vivo Magnetic Hyperthermia., 2019,, 317-337.		9
20	Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP. PLoS ONE, 2019, 14, e0214004.	1.1	19
21	Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging. ACS Omega, 2019, 4, 2719-2727.	1.6	35
22	<i>In vivo</i> comparison of the biodistribution and long-term fate of colloids – gold nanoprisms and nanorods – with minimum surface modification. Nanomedicine, 2019, 14, 3035-3055.	1.7	11
23	Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews, 2019, 138, 68-104.	6.6	217
24	Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 2019, 30, 112001.	1.3	131
25	Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 26-35.	1.7	18
26	Triggering antitumoural drug release and gene expression by magnetic hyperthermia. Advanced Drug Delivery Reviews, 2019, 138, 326-343.	6.6	92
27	Effect of Surface Chemistry and Associated Protein Corona on the Long-Term Biodegradation of Iron Oxide Nanoparticles In Vivo. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4548-4560.	4.0	123
28	Bacteria-Carried Iron Oxide Nanoparticles for Treatment of Anemia. Bioconjugate Chemistry, 2018, 29, 1785-1791.	1.8	36
29	Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood, 2018, 131, 342-352.	0.6	143
30	Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a <i>Xenopus laevis</i> model. Nanoscale, 2018, 10, 690-704.	2.8	21
31	Dual Role of Magnetic Nanoparticles as Intracellular Hotspots and Extracellular Matrix Disruptors Triggered by Magnetic Hyperthermia in 3D Cell Culture Models. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44301-44313.	4.0	40
32	Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells. Physical Chemistry Chemical Physics, 2018, 20, 17829-17838.	1.3	18
33	Controlling the Size and Shape of Uniform Magnetic Iron Oxide Nanoparticles for Biomedical Applications. , 2018, , 3-24.		3
34	Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomaterialia, 2017, 58, 181-195.	4.1	58
35	How shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles. Acta Materialia, 2017, 125, 416-424.	3.8	43
36	Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process. ACS Omega, 2017, 2, 7172-7184.	1.6	82

#	Article	IF	CITATIONS
37	One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. Langmuir, 2017, 33, 10239-10247.	1.6	43
38	The actin-binding protein profilin 2 is a novel regulator of iron homeostasis. Blood, 2017, 130, 1934-1945.	0.6	26
39	Facile microwave synthesis of uniform magnetic nanoparticles with minimal sample processing. Journal of Magnetism and Magnetic Materials, 2017, 421, 283-291.	1.0	14
40	Nanotechnology in Drug Discovery and Development. , 2017, , 264-295.		12
41	Targeted Nanoparticles for the Treatment of Alzheimer's Disease. Current Pharmaceutical Design, 2017, 23, 1927-1952.	0.9	27
42	Counterion and solvent effects on the size of magnetite nanocrystals obtained by oxidative precipitation. Journal of Materials Chemistry C, 2016, 4, 9482-9488.	2.7	19
43	Magnetic study on biodistribution and biodegradation of oral magnetic nanostructures in the rat gastrointestinal tract. Nanoscale, 2016, 8, 15041-15047.	2.8	13
44	Detailed magnetic monitoring of the enhanced magnetism of ferrihydrite along its progressive transformation into hematite. Journal of Geophysical Research: Solid Earth, 2016, 121, 4118-4129.	1.4	14
45	Fast synthesis and bioconjugation of ⁶⁸ Ga coreâ€doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media and Molecular Imaging, 2016, 11, 203-210.	0.4	68
46	Dose–Response Bioconversion and Toxicity Analysis of Magnetite Nanoparticles. IEEE Magnetics Letters, 2016, 7, 1-5.	0.6	12
47	Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1127-1138.	1.7	87
48	Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease. PLoS ONE, 2016, 11, e0159209.	1.1	23
49	Tissue Iron Distribution Assessed by MRI in Patients with Iron Loading Anemias. PLoS ONE, 2015, 10, e0139220.	1.1	11
50	Challenges for Diagnosis of Malaria and Neglected Tropical Diseases in Elimination Settings. BioMed Research International, 2015, 2015, 1-2.	0.9	1
51	Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology, 2015, 26, 205101.	1.3	45
52	Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility. Biomedizinische Technik, 2015, 60, 417-25.	0.9	41
53	Manipulating directional cell motility using intracellular superparamagnetic nanoparticles. Nanoscale, 2015, 7, 4884-4889.	2.8	25
54	Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Transactions, 2015, 44, 2943-2952.	1.6	96

#	Article	IF	Citations
55	Biotransformation of magnetic nanoparticles as a function of coating in a rat model. Nanoscale, 2015, 7, 16321-16329.	2.8	52
56	The affinity of magnetic microspheres for Schistosoma eggs. International Journal for Parasitology, 2015, 45, 43-50.	1.3	18
57	Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 733-743.	1.7	101
58	Variability and consistency in lung inflammatory responses to particles with a geogenic origin. Respirology, 2014, 19, 58-66.	1.3	32
59	Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. Physical Chemistry Chemical Physics, 2014, 16, 4456-4464.	1.3	21
60	Profilin2 Is Controlled By the Iron Regulatory Proteins and Modulates Iron Homeostasis. Blood, 2014, 124, 749-749.	0.6	0
61	Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. Journal of Controlled Release, 2013, 171, 225-233.	4.8	113
62	Effect of Anesthesia on Magnetic Nanoparticle Biodistribution After Intravenous Injection. IEEE Transactions on Magnetics, 2013, 49, 398-401.	1.2	14
63	Deferiprone and idebenone rescue frataxin depletion phenotypes in a Drosophila model of Friedreich's ataxia. Gene, 2013, 521, 274-281.	1.0	50
64	Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics, 2013, 5, 997.	1.0	38
65	The Iron Distribution and Magnetic Properties of Schistosome Eggshells: Implications for Improved Diagnostics. PLoS Neglected Tropical Diseases, 2013, 7, e2219.	1.3	22
66	Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20590-20595.	3.3	85
67	Fighting cancer with magnetic nanoparticles and immunotherapy. , 2012, , .		3
68	Quantitative magnetic analysis reveals ferritin-like iron as the most predominant iron-containing species in the murine Hfe-haemochromatosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1147-1153.	1.8	21
69	Biological applications of magnetic nanoparticles. Chemical Society Reviews, 2012, 41, 4306.	18.7	1,079
70	Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir, 2012, 28, 4346-4356.	1.6	59
71	Renal iron load in sickle cell disease is influenced by severity of haemolysis. British Journal of Haematology, 2012, 157, 599-605.	1.2	23
72	Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. Journal of Physical Chemistry C, 2011, 115, 6257-6264.	1.5	83

#	Article	lF	Citations
73	Ac magnetic susceptibility study of in vivo nanoparticle biodistribution. Journal Physics D: Applied Physics, 2011, 44, 255002.	1.3	40
74	Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials, 2011, 32, 2938-2952.	5.7	170
75	Nuclear Magnetic Resonance: A Tool for Malaria Diagnosis?. American Journal of Tropical Medicine and Hygiene, 2011, 85, 815-817.	0.6	15
76	Magnetic Nanoparticle Location and Quantification in Mice Tissues after Intravenous Injection. , 2010, , .		1
77	Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood, 2010, 116, 1574-1584.	0.6	364
78	Zinc accumulation in heterozygous mutants of <i>fumble</i> , the pantothenate kinase homologue of <i>Drosophila</i> . FEBS Letters, 2010, 584, 2942-2946.	1.3	24
79	Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases?. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 770-782.	1.1	64
80	Iron speciation study in Hfe knockout mice tissues: Magnetic and ultrastructural characterisation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 541-547.	1.8	25
81	The speciation of iron in desert dust collected in Gran Canaria (Canary Islands): Combined chemical, magnetic and optical analysis. Atmospheric Environment, 2008, 42, 8987-8996.	1.9	52
82	Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model. Journal of Magnetism and Magnetic Materials, 2007, 311, 460-463.	1.0	8
83	Biological tissue magnetism in the frame of iron overload diseases. Journal of Magnetism and Magnetic Materials, 2007, 316, 126-131.	1.0	10
84	Comparative study of iron-containing haematinics from the point of view of their magnetic properties. Journal of Magnetism and Magnetic Materials, 2007, 316, 136-139.	1.0	9
85	The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Physics in Medicine and Biology, 2007, 52, 5043-5056.	1.6	41
86	Bioinorganic transformations of liver iron deposits observed by tissue magnetic characterisation in a rat model. Journal of Inorganic Biochemistry, 2006, 100, 1790-1799.	1.5	46
87	Magnetic and structural study of the state of iron in the oral haematinic ferrimannitol ovoalbumin. Journal of Inorganic Biochemistry, 2006, 100, 413-417.	1.5	2
88	Magnetostructural study of iron sucrose. Journal of Magnetism and Magnetic Materials, 2005, 293, 69-74.	1.0	18
89	Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 434-445.	1.8	36