

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313622/publications.pdf Version: 2024-02-01

Οιανι Υγ

#	Article	IF	CITATIONS
1	Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011, 40, 4244.	38.1	1,067
2	From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159, 227-234.	6.2	388
3	Robust polydopamine nano/microcapsules and their loading and release behavior. Chemical Communications, 2009, , 6789.	4.1	195
4	Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon, 2010, 48, 2347-2353.	10.3	172
5	Template-Free and Direct Electrochemical Deposition of Hierarchical Dendritic Gold Microstructures: Growth and Their Multiple Applications. Journal of Physical Chemistry C, 2010, 114, 15617-15624.	3.1	167
6	Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 37731-37738.	8.0	164
7	Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7, 2497-2506.	10.3	141
8	Switching Water Droplet Adhesion Using Responsive Polymer Brushes. Langmuir, 2010, 26, 12377-12382.	3.5	114
9	Tapping the Potential of Polymer Brushes through Synthesis. Accounts of Chemical Research, 2015, 48, 229-237.	15.6	107
10	Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. Journal of Materials Chemistry, 2012, 22, 13123.	6.7	104
11	Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites. Journal of Materials Chemistry, 2012, 22, 9624.	6.7	96
12	Surface-Initiated Ring-Opening Metathesis Polymerization of Pentadecafluorooctyl-5-norbornene-2-carboxylate from Variable Substrates Modified with Sticky Biomimic Initiator. Macromolecules, 2010, 43, 5554-5560.	4.8	88
13	Grafting Polymer Brushes on Biomimetic Structural Surfaces for Anti-Algae Fouling and Foul Release. ACS Applied Materials & Interfaces, 2012, 4, 4557-4565.	8.0	77
14	Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications. Journal of Materials Chemistry B, 2014, 2, 5352-5357.	5.8	75
15	Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS Applied Materials & Interfaces, 2019, 11, 39171-39178.	8.0	66
16	Polyelectrolyte Brush Templated Multiple Loading of Pd Nanoparticles onto TiO ₂ Nanowires via Regenerative Counterion Exchangeâ^'Reduction. Journal of Physical Chemistry C, 2009, 113, 7677-7683.	3.1	64
17	Interfacial Embedding of Laserâ€Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24%. Advanced Materials, 2021, 33, e2101590.	21.0	62
18	The Weak Interaction of Surfactants with Polymer Brushes and Its Impact on Lubricating Behavior. Macromolecules, 2015, 48, 6186-6196.	4.8	61

#	Article	IF	CITATIONS
19	Double Barriers for Moisture Degradation: Assembly of Hydrolysable Hydrophobic Molecules for Stable Perovskite Solar Cells with High Openâ€Circuit Voltage. Advanced Functional Materials, 2020, 30, 2002639.	14.9	61
20	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 18246-18251.	13.8	60
21	Antifouling on Gecko's Feet Inspired Fibrillar Surfaces: Evolving from Land to Marine and from Liquid Repellency to Algae Resistance. Advanced Materials Interfaces, 2015, 2, 1500257.	3.7	56
22	Self-healing polydimethylsiloxane antifouling coatings based on zwitterionic polyethylenimine-functionalized gallium nanodroplets. Chemical Engineering Journal, 2022, 427, 131019.	12.7	56
23	New Self-Healing Triboelectric Nanogenerator Based on Simultaneous Repair Friction Layer and Conductive Layer. ACS Applied Materials & Interfaces, 2020, 12, 30390-30398.	8.0	53
24	Synchronous Passivation of Defects with Low Formation Energies via Terdentate Anchoring Enabling High Performance Perovskite Solar Cells with Efficiency over 24%. Advanced Functional Materials, 2022, 32, .	14.9	52
25	Nitrogen-Phosphorus Codoped Carbon Nanospheres as Lubricant Additives for Antiwear and Friction Reduction. ACS Applied Nano Materials, 2020, 3, 5362-5371.	5.0	50
26	Dialkyl Dithiophosphate-Functionalized Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as Effective Lubricant Additives for Antiwear and Friction Reduction. ACS Applied Nano Materials, 2021, 4, 11080-11087.	5.0	49
27	Laserâ€Generated Supranano Liquid Metal as Efficient Electron Mediator in Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e2001571.	21.0	46
28	Self-Assembly of Catecholic Macroinitiator on Various Substrates and Surface-Initiated Polymerization. Langmuir, 2012, 28, 2574-2581.	3.5	44
29	CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale, 2012, 4, 2109.	5.6	42
30	Laserâ€Generated Nanocrystals in Perovskite: Universal Embedding of Ligandâ€Free and Subâ€10 nm Nanocrystals in Solutionâ€Processed Metal Halide Perovskite Films for Effectively Modulated Optoelectronic Performance. Advanced Energy Materials, 2019, 9, 1901341.	19.5	42
31	Enhanced lubricity and anti-wear performance of zwitterionic polymer-modified N-enriched porous carbon nanosheets as water-based lubricant additive. Tribology International, 2022, 167, 107421.	5.9	42
32	Towards chemically bonded p–n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. Journal of Materials Chemistry, 2010, 20, 6910.	6.7	41
33	Dialkyl Dithiophosphate-Functionalized Gallium-Based Liquid-Metal Nanodroplets as Lubricant Additives for Antiwear and Friction Reduction. ACS Applied Nano Materials, 2020, 3, 10115-10122.	5.0	40
34	A general approach for construction of asymmetric modification membranes for gated flow nanochannels. Journal of Materials Chemistry A, 2014, 2, 8804-8814.	10.3	39
35	Fabrication of Two-Dimensional Functional Covalent Organic Frameworks <i>via</i> the Thiol-Ene "Click―Reaction as Lubricant Additives for Antiwear and Friction Reduction. ACS Applied Materials & Interfaces, 2021, 13, 36213-36220.	8.0	39
36	Responsive wetting transition on superhydrophobic surfaces with sparsely grafted polymer brushes. Soft Matter, 2011, 7, 515-523.	2.7	38

#	Article	IF	CITATIONS
37	Excellent tribological and anti-corrosion performances enabled by novel hollow graphite carbon nanosphere with controlled release of corrosion inhibitor. Chemical Engineering Journal, 2021, 412, 128648.	12.7	38
38	Recent Advanced on the MXene–Organic Hybrids: Design, Synthesis, and Their Applications. Nanomaterials, 2021, 11, 166.	4.1	38
39	Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction. Tribology International, 2022, 169, 107458.	5.9	36
40	Multiscale hairy surfaces for nearly perfect marine antibiofouling. Journal of Materials Chemistry B, 2013, 1, 3599.	5.8	34
41	Activating a Semiconductor–Liquid Junction via Laserâ€Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2201140.	21.0	34
42	Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups. Journal of Colloid and Interface Science, 2010, 351, 261-266.	9.4	33
43	Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications. Chemical Engineering Journal, 2022, 448, 137668.	12.7	32
44	Polymer brushes on structural surfaces: a novel synergistic strategy for perfectly resisting algae settlement. Biomaterials Science, 2017, 5, 2493-2500.	5.4	26
45	Ga-based liquid metal with good self-lubricity and high load-carrying capacity. Tribology International, 2019, 129, 1-4.	5.9	26
46	Grafting polymer brushes on graphene oxide for controlling surface charge states and templated synthesis of metal nanoparticles. Journal of Applied Polymer Science, 2013, 127, 3074-3083.	2.6	25
47	Probing the lubricative behaviors of a high MXene-content epoxy-based composite under dry sliding. Tribology International, 2022, 165, 107314.	5.9	25
48	Acetate-Based Crystallization Kinetics Modulation of CsPbI ₂ Br for Improved Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 658-665.	5.1	21
49	Wet-Chemical Synthesis of Surface-Passivated Halide Perovskite Microwires for Improved Optoelectronic Performance and Stability. ACS Applied Materials & Interfaces, 2018, 10, 43850-43856.	8.0	20
50	Contact printing a biomimetic catecholic monolayer on a variety of surfaces and derivation reaction. Chemical Communications, 2012, 48, 398-400.	4.1	19
51	Promoting the Waterâ€Reduction Kinetics and Alkali Tolerance of MoNi ₄ Nanocrystals via a Mo ₂ TiC ₂ T <i>_x</i> Induced Builtâ€In Electric Field. Small, 2022, 18, e2107541.	10.0	19
52	Embedding of WO3 nanocrystals with rich oxygen-vacancies in solution processed perovskite film for improved photovoltaic performance. Journal of Power Sources, 2020, 461, 228175.	7.8	17
53	Polymer brushes assisted loading of high density CdS/CdSe quantum dots onto TiO2 nanotubes and the resulting photoelectric performance. RSC Advances, 2012, 2, 3978.	3.6	16
54	Grainâ€Boundariesâ€Engineering via Laser Manufactured Laâ€Doped BaSnO ₃ Nanocrystals with Tailored Surface States Enabling Perovskite Solar Cells with Efficiency of 23.74%. Advanced Functional Materials, 2022, 32, 2112388.	14.9	16

#	Article	IF	CITATIONS
55	Fabrication of polyelectrolyte brush-functionalized two-dimensional covalent organic frameworks as additives for aqueous lubricants. Tribology International, 2022, 174, 107737.	5.9	16
56	Step-by-step build-up of ordered p–n heterojunctions at nanoscale for efficient light harvesting. RSC Advances, 2013, 3, 166-171.	3.6	14
57	Embedding of Ti ₃ C ₂ T <i>_x</i> Nanocrystals in MAPbI ₃ Microwires for Improved Responsivity and Detectivity of Photodetector. Small, 2021, 17, e2101954.	10.0	14
58	Surface Passivation with a Fluorocarbon-Based Pyridine Derivative for High-Crystallinity Perovskite Solar Cells with Efficiency Over 20% and Good Humidity Stability. ACS Applied Energy Materials, 2021, 4, 10484-10492.	5.1	14
59	Grafting embedded poly(ionic liquid) brushes on biomimetic sharklet resin surface for anti-biofouling applications. Progress in Organic Coatings, 2021, 157, 106298.	3.9	12
60	Grafting Binary PEG and Fluoropolymer Brushes from Mix-Biomimic Initiator as "Ambiguous―Surfaces for Antibiofouling. Macromolecular Chemistry and Physics, 2017, 218, 1700085.	2.2	11
61	Superior Lubricity and Antiwear Performances Enabled by Porous Carbon Nanospheres with Different Shell Microstructures. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	11
62	Self-healable transparent polymer/salt hybrid adhesive <i>via</i> a ternary bonding effect. Journal of Materials Chemistry A, 2020, 8, 21812-21823.	10.3	11
63	Durable self-polishing antifouling coating based on fluorine-containing pyrrolidone amphiphilic copolymer-functionalized nanosilica. Progress in Organic Coatings, 2022, 165, 106706.	3.9	11
64	Fabrication of binary components based on a poly(ionic liquid) through "grafting―and "clicking―and their synergistic antifouling activity. RSC Advances, 2015, 5, 100347-100353.	3.6	10
65	Self-assembly of catecholic ferrocene and electrochemical behavior of its monolayer. RSC Advances, 2015, 5, 60090-60095.	3.6	10
66	Novel Anticorrosion Property of Organic Coating Based on Liquid Metal. Advanced Materials Interfaces, 2019, 6, 1900942.	3.7	10
67	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 18414-18419.	2.0	10
68	Effects of Thickness and Grafting Density on the Activity of Polymerâ€Brushâ€Immobilized Tris(triazolyl) Copper(I) Catalysts. ChemCatChem, 2015, 7, 856-864.	3.7	9
69	Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles. ACS Applied Materials & Interfaces, 2021, 13, 56597-56606.	8.0	9
70	Electrodeposition of mesoporous Ni–Mo–O composite films for hydrogen evolution reaction. Vacuum, 2022, 198, 110888.	3.5	9
71	Antifouling Surfaces Based on Polymer Brushes. , 2015, , 55-81.		8
72	Fusion and alloying of (bi)metallic nanocrystals onto TiO2 nanowires in the presence of surface grafted polymer brushes. Physical Chemistry Chemical Physics, 2010, 12, 5480.	2.8	7

#	Article	IF	CITATIONS
73	Bifunctional Interfacial Modification Engineering with Biomimetic Perfluoro-Copolymer-Enabled High-Efficiency and Moisture-Resistant Perovskite Solar Cells. ACS Applied Electronic Materials, 2021, 3, 238-247.	4.3	6
74	Bioinspired zwitterionic dopamine-functionalized liquid-metal nanodroplets for antifouling application. Progress in Organic Coatings, 2022, 169, 106922.	3.9	6
75	Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. Journal of Chemical Physics, 2020, 153, 024705.	3.0	5
76	A novel way towards CdS sensitized TiO2 nanoparticles. Chinese Chemical Letters, 2010, 21, 1003-1006.	9.0	2
77	Bi-quantum dots co-sensitized TiO2 nanocomposites: Templated synthesis and stabilized by polymer brushes. Materials Chemistry and Physics, 2012, 134, 966-972.	4.0	2
78	Antifouling of Micro-/Nanostructural Surfaces. , 2015, , 83-103.		2
79	The electrostatic selfâ€assembly of microgels on polymer brushes and its effects on interfacial friction. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
80	Polyelectrolyte brushes as efficient platform for synthesis of Cu and Pt bimetallic nanocrystals onto TiO ₂ nanowires. Surface and Interface Analysis, 2017, 49, 904-909.	1.8	2
81	Embedding laser generated GaAs nanocrystals in perovskite wires for enhanced charge transport and photodetection. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	1
82	Synthesis and Properties of Low-surface-energy Polyimides. Chemistry Letters, 2014, 43, 1926-1928.	1.3	0
83	Hydrolyzable Hydrophobic Molecules: Double Barriers for Moisture Degradation: Assembly of Hydrolysable Hydrophobic Molecules for Stable Perovskite Solar Cells with High Openâ€Circuit Voltage (Adv. Funct. Mater. 28/2020). Advanced Functional Materials, 2020, 30, 2070189.	14.9	0
84	Interfacial Embedding of Laserâ€Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24% (Adv. Mater. 36/2021). Advanced Materials, 2021, 33, 2170285.	21.0	0