Kevin C Slep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivalent interactions make adherens junction–cytoskeletal linkage robust during morphogenesis. Journal of Cell Biology, 2021, 220, .	5.2	21
2	Biallelic mutations in the TOGARAM1 gene cause a novel primary ciliopathy. Journal of Medical Genetics, 2020, 58, jmedgenet-2020-106833.	3.2	12
3	Cytoskeletal Repair: Microtubule Orthopaedics toÂtheÂRescue. Current Biology, 2020, 30, R646-R649.	3.9	1
4	Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1. PLoS ONE, 2019, 14, e0219823.	2.5	15
5	Cytoskeletal cryptography: structure and mechanism of an eraser. Nature Structural and Molecular Biology, 2019, 26, 532-534.	8.2	1
6	Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex. Journal of Biological Chemistry, 2019, 294, 918-931.	3.4	18
7	An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly. Journal of Cell Biology, 2018, 217, 1217-1231.	5.2	47
8	Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Molecular Biology of the Cell, 2018, 29, 285-294.	2.1	5
9	Control of microtubule dynamics using an optogenetic microtubule plus end–F-actin cross-linker. Journal of Cell Biology, 2018, 217, 779-793.	5.2	24
10	Asterless is a Polo-like kinase 4 substrate that both activates and inhibits kinase activity depending on its phosphorylation state. Molecular Biology of the Cell, 2018, 29, 2874-2886.	2.1	21
11	A Cytoskeletal Symphony: Owed to TOG. Developmental Cell, 2018, 46, 5-7.	7.0	12
12	TOG–tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. Journal of Cell Biology, 2017, 216, 1641-1657.	5.2	55
13	Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Structure, 2017, 25, 1130-1138.e6.	3.3	15
14	A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4. Nature Communications, 2016, 7, 12476.	12.8	53
15	The Secret of Centriole Length: Keep a LID on It. Developmental Cell, 2016, 37, 293-295.	7.0	1
16	A microtubule dynamics reconstitutional convention. Journal of Cell Biology, 2016, 215, 305-307.	5.2	0
17	Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability. Journal of Cell Biology, 2015, 208, 401-414.	5.2	30
18	Drosophila melanogaster Mini Spindles TOG3 Utilizes Unique Structural Elements to Promote Domain Stability and Maintain a TOG1- and TOG2-like Tubulin-binding Surface. Journal of Biological Chemistry, 2015, 290, 10149-10162.	3.4	10

KEVIN C SLEP

#	Article	IF	CITATIONS
19	Crescerin uses a TOG domain array to regulate microtubules in the primary cilium. Molecular Biology of the Cell, 2015, 26, 4248-4264.	2.1	52
20	Newly Characterized Region of CP190 Associates with Microtubules and Mediates Proper Spindle Morphology in Drosophila Stem Cells. PLoS ONE, 2015, 10, e0144174.	2.5	19
21	The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array. Molecular Biology of the Cell, 2014, 25, 2375-2392.	2.1	47
22	The Mechanism of Dynein Light Chain LC8-mediated Oligomerization of the Ana2 Centriole Duplication Factor. Journal of Biological Chemistry, 2014, 289, 20727-20739.	3.4	29
23	A Cryptic TOG Domain with a Distinct Architecture Underlies CLASP-Dependent Bipolar Spindle Formation. Structure, 2013, 21, 939-950.	3.3	50
24	The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Molecular Biology of the Cell, 2013, 24, 2362-2377.	2.1	28
25	Structure of a Yeast Dyn2-Nup159 Complex and Molecular Basis for Dynein Light Chain-Nuclear Pore Interaction. Journal of Biological Chemistry, 2012, 287, 15862-15873.	3.4	24
26	The Structure of the Plk4 Cryptic Polo Box Reveals Two Tandem Polo Boxes Required for Centriole Duplication. Structure, 2012, 20, 1905-1917.	3.3	69
27	Structure of the Human Discs Large 1 PDZ2– Adenomatous Polyposis Coli Cytoskeletal Polarity Complex: Insight into Peptide Engagement and PDZ Clustering. PLoS ONE, 2012, 7, e50097.	2.5	8
28	The microtubule lattice and plus-end association of <i>Drosophila</i> Mini spindles is spatially regulated to fine-tune microtubule dynamics. Molecular Biology of the Cell, 2011, 22, 4343-4361.	2.1	34
29	αβ-Tubulin and Microtubule-Binding Assays. Methods in Molecular Biology, 2011, 777, 87-97.	0.9	17
30	Structural and mechanistic insights into microtubule end-binding proteins. Current Opinion in Cell Biology, 2010, 22, 88-95.	5.4	74
31	The Spectraplakin Short Stop Is an Actin–Microtubule Cross-Linker That Contributes to Organization of the Microtubule Network. Molecular Biology of the Cell, 2010, 21, 1714-1724.	2.1	96
32	The <i>Drosophila</i> afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. Journal of Cell Biology, 2009, 186, 57-73.	5.2	233
33	The role of TOG domains in microtubule plus end dynamics. Biochemical Society Transactions, 2009, 37, 1002-1006.	3.4	51
34	Molecular architecture of Gα _o and the structural basis for RGS16-mediated deactivation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6243-6248.	7.1	53
35	Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170, and EB1. Molecular Cell, 2007, 27, 976-991.	9.7	233
36	Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. Journal of Cell Biology, 2005, 168, 587-598.	5.2	169

#	Article	IF	CITATIONS
37	Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Ã Nature, 2001, 409, 1071-1077.	27.8	256