Di-Hua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313255/publications.pdf Version: 2024-02-01

	53660	82410
7,389	45	72
citations	h-index	g-index
213	213	4540
docs citations	times ranked	citing authors
	citations 213	7,389 45 citations h-index 213 213

#	Article	IF	CITATIONS
1	Thermal reduction-desorption of cadmium from contaminated soil by a biomass co-pyrolysis process. Journal of Hazardous Materials, 2022, 423, 126937.	6.5	13
2	A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. Journal of Hazardous Materials, 2022, 424, 127586.	6.5	49
3	Integrating preparation of borides and separation of alkaline- and rare-earth ions through an electrochemical alloying approach in molten salts. Separation and Purification Technology, 2022, 285, 120391.	3.9	5
4	Chloride impurity induced corrosion of nickel anode and its protection in molten Li2CO3-Na2CO3-K2CO3. Corrosion Science, 2022, 196, 110027.	3.0	4
5	Electrolytic core–shell Co@C for diethyl phthalate degradation. Chemical Engineering Journal, 2022, 431, 134065.	6.6	14
6	Vacuum Pyrolysis of Pine Sawdust to Recover Spent Lithium Ion Batteries: The Synergistic Effect of Carbothermic Reduction and Pyrolysis Gas Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1287-1297.	3.2	38
7	Anodic carbidation of tantalum in molten CaCl2-CaC2. Journal of Solid State Electrochemistry, 2022, 26, 791-798.	1.2	5
8	Biphase Co@C core-shell catalysts for efficient Fenton-like catalysis. Journal of Hazardous Materials, 2022, 429, 128287.	6.5	24
9	Modeling the mass transfer and phase transition of Sn-Sb positive electrode in a liquid metal battery. Journal of Electroanalytical Chemistry, 2022, 909, 116144.	1.9	6
10	Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307, 121201.	10.8	36
11	Mediating the alloying depth to tune silicon's morphology and lithium-storage performance. Journal of Materials Chemistry A, 2022, 10, 10004-10013.	5.2	4
12	Local Basicity Dependent Gas-Liquid Interfacial Corrosion of Nickel Anode and Its Protection in Molten Li ₂ CO ₃ -Na ₂ CO ₃ -K ₂ CO ₃ . Journal of the Electrochemical Society, 2022, 169, 031505.	1.3	4
13	Computation-guided design and preparation of durable and efficient WC-Mo2C heterojunction for hydrogen evolution reaction. Cell Reports Physical Science, 2022, 3, 100784.	2.8	6
14	Waste Eggshell-derived N, P, S Tri-doped Core-shell Catalysts for Efficient Fenton-like Catalysis. Chemical Engineering Journal, 2022, 440, 135879.	6.6	17
15	Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates. Nano Letters, 2022, 22, 97-104.	4.5	17
16	Electrochemical Synthesis of Multidimensional Nanostructured Silicon as a Negative Electrode Material for Lithium-Ion Battery. ACS Nano, 2022, 16, 7689-7700.	7.3	34
17	CO ₂ â€Derived Oxygenâ€Rich Carbon with Enhanced Redox Reactions as a Cathode Material for Aqueous Znâ€lon Batteries. ChemistrySelect, 2022, 7, .	0.7	1
18	Suppressing Carbon Deposition by Introducing SiO ₃ ^{2â^'} in Molten CaCl ₂ for Efficient Electro-Deoxidation. Journal of the Electrochemical Society, 2022, 169, 062504.	1.3	0

#	Article	IF	CITATIONS
19	Recovery of lead and iodine from spent perovskite solar cells in molten salt. Chemical Engineering Journal, 2022, 447, 137498.	6.6	8
20	Cu ₇ Te ₄ as an Anode Material and Zn Dendrite Inhibitor for Aqueous Znâ€lon Battery. Advanced Functional Materials, 2022, 32, .	7.8	30
21	A novel porous carbon derived from CO2 for high-efficient tetracycline adsorption: Behavior and mechanism. Applied Surface Science, 2021, 538, 148110.	3.1	21
22	A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Materials, 2021, 34, 768-777.	9.5	64
23	Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation. International Journal of Hydrogen Energy, 2021, 46, 14932-14943.	3.8	23
24	Observation of Structural Decomposition of Na ₃ V ₂ (PO ₄) ₃ and Na ₃ V ₂ (PO ₄) ₂ F ₃ as Cathodes for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2797-2807.	2.5	32
25	Electrolysis of Lithium-Free Molten Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 4167-4174.	3.2	20
26	Synergistic Effect between S and Se Enhancing the Electrochemical Behavior of Se <i>_x</i> S <i>_y</i> in Aqueous Zn Metal Batteries. Advanced Functional Materials, 2021, 31, 2101237.	7.8	44
27	Self-Driven Salt-Thermal Reduction Approach for the Synthesis of Cu ₂ O and AgCl–Cu ₂ O Hybrids with Superior Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 5651-5660.	3.2	7
28	Effectively removing tetracycline from water by nanoarchitectured carbons derived from CO2: Structure and surface chemistry influence. Environmental Research, 2021, 195, 110883.	3.7	5
29	Electrochemical preparation and homogenization of face-centered FeCoNiCu medium entropy alloy electrodes enabling oxygen evolution reactions. Electrochimica Acta, 2021, 378, 138142.	2.6	36
30	Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Applied Catalysis B: Environmental, 2021, 285, 119834.	10.8	71
31	Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO ₃ in Molten Salt. ACS Applied Materials & Interfaces, 2021, 13, 30668-30677.	4.0	18
32	Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. Waste Management, 2021, 129, 85-94.	3.7	38
33	Electrochemical Conversion of Silica Nanoparticles to Silicon Nanotubes in Molten Salts: Implications for High-Performance Lithium-Ion Battery Anode. ACS Applied Nano Materials, 2021, 4, 7028-7036.	2.4	19
34	Degradation of 2,4-DCP using persulfate and iron/E-carbon micro-electrolysis coupling system. Journal of Hazardous Materials, 2021, 413, 125381.	6.5	37
35	Transforming CO ₂ into Sulfur-Doped Carbon As a High-Efficiency Persulfate Catalyst for the Degradation of 2,4-Dichlorphenol: Influential Factors, Activation Mechanism, and Regeneration of Catalyst. ACS ES&T Water, 2021, 1, 1796-1806.	2.3	10
36	Corrosion Behaviors of Iron, Chromium, Nickel, Low-Carbon Steel, and Four Types of Stainless Steels in Liquid Antimony-Tin Alloy. Corrosion, 2021, 77, 1192-1202.	0.5	5

#	Article	IF	CITATIONS
37	Wetting Kinetics of Molten Carbonate on Carbon. Langmuir, 2021, 37, 10594-10601.	1.6	4
38	Electrochemically converting micro-sized industrial Si/FeSi2 to nano Si/FeSi for the high-performance lithium-ion battery anode. Materials Today Energy, 2021, 21, 100817.	2.5	16
39	Revealing the phase evolution and lithium diffusion in the liquid Sn-Sb electrode. Journal of Electroanalytical Chemistry, 2021, , 115719.	1.9	2
40	Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chemical Engineering Journal, 2021, 420, 129920.	6.6	30
41	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	6.6	11
42	Modulating carbon growth kinetics enables electrosynthesis of graphite derived from CO2 via a liquid–solid–solid process. Carbon, 2021, 184, 426-436.	5.4	17
43	A combined oxidation and salt-thermal approach to converting copper scraps to copper oxides as energy storage materials. Journal of Cleaner Production, 2021, 320, 128870.	4.6	3
44	Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes. Waste Management, 2021, 135, 182-189.	3.7	27
45	Revealing the mechanism of solid-state electrochemical conversion reactions in strong alkaline solutions. Chemical Engineering Journal, 2021, 426, 131307.	6.6	3
46	Regulating electrolytic Fe0.5CoNiCuZn high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. Journal of Materials Science and Technology, 2021, 93, 110-118.	5.6	42
47	Zincothermic reduction of silica to silicon: make the impossible possible. Journal of Materials Chemistry A, 2021, 9, 21323-21331.	5.2	9
48	A vapor thermal approach to selective recycling of spent lithium-ion batteries. Green Chemistry, 2021, 23, 8673-8684.	4.6	20
49	Electrochemically Activated Cu _{2–} <i>_x</i> Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Zn″on Half and Full Batteries. Advanced Energy Materials, 2021, 11, 2102607.	10.2	37
50	A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nature Communications, 2021, 12, 6776.	5.8	169
51	Corrosion Behaviors of SS310 and IN718 Alloys in Molten Carbonate. Journal of the Electrochemical Society, 2021, 168, 121510.	1.3	5
52	Rearrangement of Oxide Scale on Ni-11Fe-10Cu-6Al Pre-Oxidized at 950 °C during Anodic Polarization in Molten Carbonate. Journal of the Electrochemical Society, 2021, 168, 121511.	1.3	3
53	Preparation of MoB ₂ Nanoparticles by Electrolysis of MoS ₂ /B Mixture in Molten NaCl-KCl at 700 °C. Journal of the Electrochemical Society, 2021, 168, 123509.	1.3	2
54	Effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on sulphation of Pb disc electrodes in aqueous H ₂ SO ₄ . Materials Technology, 2020, 35, 135-140.	1.5	10

#	Article	IF	CITATIONS
55	Concentration-Dependent Enhancing Effect of Dissolved Silicate on the Oxidative Degradation of Sulfamethazine by Zero-Valent Iron under Aerobic Conditions. Environmental Science & Technology, 2020, 54, 1242-1249.	4.6	28
56	The capacitive performances of carbon obtained from the electrolysis of CO2 in molten carbonates: Effects of electrolysis voltage and temperature. Journal of Energy Chemistry, 2020, 51, 418-424.	7.1	14
57	A facile strategy to synthesize graphitic carbon-encapsulated core-shell nanocomposites derived from CO2 as functional materials. Composites Communications, 2020, 22, 100464.	3.3	12
58	Buffering electrolyte alkalinity for highly selective and energy-efficient transformation of CO2 to CO. Electrochemistry Communications, 2020, 121, 106864.	2.3	14
59	A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell. Green Chemistry, 2020, 22, 8633-8641.	4.6	38
60	A molten calcium carbonate mediator for the electrochemical conversion and absorption of carbon dioxide. Green Chemistry, 2020, 22, 7946-7954.	4.6	26
61	One-pot compositional and structural regeneration of degraded LiCoO ₂ for directly reusing it as a high-performance lithium-ion battery cathode. Green Chemistry, 2020, 22, 6489-6496.	4.6	56
62	Direct Recovery and Efficient Reutilization of Degraded Ternary Cathode Materials from Spent Lithium-Ion Batteries via a Homogeneous Thermochemical Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 14022-14029.	3.2	55
63	Molten Electrolyte-Modulated Electrosynthesis of Multi-Anion Mo-Based Lamellar Nanohybrids Derived from Natural Minerals for Boosting Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 57870-57880.	4.0	12
64	Tunable Selectivity and High Efficiency of CO2 Electroreduction via Borate-Enhanced Molten Salt Electrolysis. IScience, 2020, 23, 101607.	1.9	24
65	Scalable Fabrication of Carbon Nanomaterials by Electrochemical Dual-Electrode Exfoliation of Graphite in Hydroxide Molten Salt. Industrial & Engineering Chemistry Research, 2020, 59, 10010-10017.	1.8	9
66	Green Carbon Material for Organic Contaminants Adsorption. Langmuir, 2020, 36, 3141-3148.	1.6	19
67	Effect of Doping Al on theÂHigh-Temperature Oxidation Behavior of Ni–11Fe–10Cu Alloy. Oxidation of Metals, 2020, 93, 417-431.	1.0	8
68	Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3. Corrosion Science, 2020, 166, 108450.	3.0	16
69	Bionic Structural Design and Electrochemical Manufacture of WC/N-Doped Carbon Hybrids as Efficient ORR Catalyst. Journal of the Electrochemical Society, 2020, 167, 064502.	1.3	9
70	Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1695-1702.	2.4	6
71	Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications. Applied Energy, 2019, 255, 113862.	5.1	25
72	A Natural Transporter of Silicon and Carbon: Conversion of Rice Husks to Silicon Carbide or Carbon‧ilicon Hybrid for Lithiumâ€lon Battery Anodes via a Molten Salt Electrolysis Approach. Batteries and Supercaps, 2019, 2, 1007-1015.	2.4	27

#	Article	IF	CITATIONS
73	Tuning the preferentially electrochemical growth of carbon at the "gaseous CO2-liquid molten salt-solid electrode―three-phase interline. Electrochimica Acta, 2019, 324, 134852.	2.6	17
74	Electric Field-Driven Interfacial Alloying for in Situ Fabrication of Nano-Mo ₂ C on Carbon Fabric as Cathode toward Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2019, 11, 38606-38615.	4.0	22
75	Understanding the electrode reaction process of dechlorination of 2,4-dichlorophenol over Ni/Fe nanoparticles: Effect of pH and 2,4-dichlorophenol concentration. Journal of Environmental Sciences, 2019, 84, 13-20.	3.2	13
76	Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process. Current Opinion in Electrochemistry, 2019, 17, 38-46.	2.5	47
77	Durability of platinum coating anode in molten carbonate electrolysis cell. Corrosion Science, 2019, 153, 12-18.	3.0	24
78	Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Advances, 2019, 9, 10976-10982.	1.7	36
79	Enhanced kinetics of CO2 electro-reduction on a hollow gas bubbling electrode in molten ternary carbonates. Electrochemistry Communications, 2019, 100, 81-84.	2.3	18
80	Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO ₂ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 208-214.	2.2	9
81	Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures. Electrochemistry Communications, 2018, 88, 79-82.	2.3	34
82	Electrochemically synthesized N-doped molybdenum carbide nanoparticles for efficient catalysis of hydrogen evolution reaction. Electrochimica Acta, 2018, 261, 578-587.	2.6	40
83	Heterogeneous activation of peroxymonocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate. Chemical Engineering Journal, 2018, 334, 1297-1308.	6.6	60
84	Electrolytic synthesis of carbon from the captured CO2 in molten LiCl–KCl–CaCO3: Critical roles of electrode potential and temperature for hollow structure and lithium storage performance. Electrochimica Acta, 2018, 259, 975-985.	2.6	47
85	Nickel-Iron-Copper Alloy as Inert Anode for Ternary Molten Carbonate Electrolysis at 650°C. Journal of the Electrochemical Society, 2018, 165, E572-E577.	1.3	28
86	Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate. Electrochimica Acta, 2018, 279, 250-257.	2.6	40
87	An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2770-2778.	1.0	10
88	Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3. Corrosion Science, 2018, 141, 168-174.	3.0	32
89	Communication—Light-Induced Plating of Aluminum on Silicon in a Lewis Acidic Chloroaluminate Ionic Liquid. Journal of the Electrochemical Society, 2018, 165, D381-D383.	1.3	4
90	Light-Induced Plating of Aluminum on Silicon in an Ionic Liquid. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
91	Coating titanium on carbon steel by in-situ electrochemical reduction of solid TiO2 layer. Transactions of Nonferrous Metals Society of China, 2017, 27, 134-140.	1.7	2
92	Spontaneous growth of CuO nanoflakes and microflowers on copper in alkaline solutions. Journal of Alloys and Compounds, 2017, 704, 624-630.	2.8	22
93	Electrochemical Synthesis of Nano-Metallic Carbides from the Mixtures of Metal Oxide and Graphite. Journal of the Electrochemical Society, 2017, 164, E144-E150.	1.3	22
94	Disilicate-Assisted Iron Electrolysis for Sequential Fenton-Oxidation and Coagulation of Aqueous Contaminants. Environmental Science & amp; Technology, 2017, 51, 8077-8084.	4.6	35
95	Flueâ€Gasâ€Đerived Sulfurâ€Đoped Carbon with Enhanced Capacitance. Advanced Sustainable Systems, 2017, 1, 1700047.	2.7	33
96	Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO ₂ . Journal of Materials Chemistry A, 2017, 5, 12822-12827.	5.2	59
97	The lithium storage performance of electrolytic-carbon from CO2. Journal of Power Sources, 2017, 341, 419-426.	4.0	23
98	Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt. Electrochimica Acta, 2017, 253, 248-256.	2.6	17
99	Synthesis of nanostructured graphite via molten salt reduction of CO ₂ and SO ₂ at a relatively low temperature. Journal of Materials Chemistry A, 2017, 5, 20603-20607.	5.2	36
100	Spectroscopic characterization of dissolved organic matter from sludge solubilization treatment by micro-bubble technology. Ecological Engineering, 2017, 106, 94-100.	1.6	14
101	Electrolytic Production of Nickel-Cobalt Magnetic Alloys from Solid Oxides in Molten Carbonates. Journal of the Electrochemical Society, 2017, 164, E422-E427.	1.3	16
102	Interfacial Synthesis of Free-Standing Asymmetrical PPY-PEDOT Copolymer Film with 3D Network Structure for Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A1820-A1825.	1.3	7
103	Unusual temperature effect on the stability of nickel anodes in molten carbonates. Electrochimica Acta, 2017, 245, 410-416.	2.6	26
104	Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts. Carbon, 2017, 111, 162-172.	5.4	39
105	Preparation of FeCoNiCrMn High Entropy Alloy by Electrochemical Reduction of Solid Oxides in Molten Salt and Its Corrosion Behavior in Aqueous Solution. Journal of the Electrochemical Society, 2017, 164, E575-E579.	1.3	37
106	(Invited) Electrochemical Deposition of Carbon Materials in Molten Salts. ECS Transactions, 2017, 80, 791-799.	0.3	2
107	Electrochemical Preparation of Porous Ti–13Zr–13Nb Alloy and It's Corrosion Behavior in Ringer's Solution. Materials Transactions, 2017, 58, 326-330.	0.4	13
108	Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant. PLoS ONE, 2017, 12, e0187355.	1.1	12

#	Article	IF	CITATIONS
109	(Invited) Electrochemical Deposition of Carbon Materials in Molten Salts. ECS Meeting Abstracts, 2017, , .	0.0	0
110	Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Metals, 2016, 35, 581-590.	3.6	20
111	Sulfur doped reduced graphene oxides with enhanced catalytic activity for oxygen reduction via molten salt redox-sulfidation. Physical Chemistry Chemical Physics, 2016, 18, 32653-32657.	1.3	10
112	Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction. Faraday Discussions, 2016, 190, 147-159.	1.6	44
113	Molten salt CO ₂ capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition. Faraday Discussions, 2016, 190, 241-258.	1.6	49
114	Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate. Environmental Science & Technology, 2016, 50, 10588-10595.	4.6	56
115	Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells. Journal of Power Sources, 2016, 330, 211-218.	4.0	10
116	High-temperature oxidation behavior of Ni-11Fe-10Cu alloy: Growth of a protective oxide scale. Corrosion Science, 2016, 112, 54-62.	3.0	28
117	Acclimated sediment microbial fuel cells from a eutrophic lake for the in situ denitrification process. RSC Advances, 2016, 6, 80079-80085.	1.7	9
118	Improvements of energy conversion and storage: general discussion. Faraday Discussions, 2016, 190, 291-306.	1.6	4
119	Developments for nuclear reactors and spent fuels processing: general discussion. Faraday Discussions, 2016, 190, 399-419.	1.6	0
120	Benefits to energy efficiency and environmental impact: general discussion. Faraday Discussions, 2016, 190, 161-204.	1.6	2
121	Advancement in knowledge of phenomena and processes: general discussion. Faraday Discussions, 2016, 190, 525-549.	1.6	0
122	Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3. International Journal of Hydrogen Energy, 2016, 41, 18699-18705.	3.8	35
123	Electrolytic Germanium for Calcium Storage. Journal of the Electrochemical Society, 2016, 163, E351-E353.	1.3	3
124	One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Advances, 2016, 6, 106485-106490.	1.7	47
125	Effect of doping aluminum and yttrium on high-temperature oxidation behavior of Ni-11Fe-10Cu alloy. Journal of Rare Earths, 2016, 34, 1139-1147.	2.5	14
126	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithiumâ€ S torage Properties. Angewandte Chemie, 2016, 128, 7553-7557.	1.6	19

#	Article	lF	CITATIONS
127	Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International Journal of Hydrogen Energy, 2016, 41, 18713-18720.	3.8	66
128	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium‧torage Properties. Angewandte Chemie - International Edition, 2016, 55, 7427-7431.	7.2	153
129	Adsorption of tetracycline and sulfonamide antibiotics on amorphous nano-carbon. Desalination and Water Treatment, 2016, 57, 22682-22694.	1.0	14
130	Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: trapping aniline between interlayers. Journal of Materials Chemistry A, 2015, 3, 8676-8682.	5.2	31
131	Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking. Environmental Science and Pollution Research, 2015, 22, 14201-14208.	2.7	10
132	Enhanced adsorption of aqueous perchlorate on quaternary ammonium chloride surfactant-modified activated carbon fibers. Desalination and Water Treatment, 2015, 55, 484-495.	1.0	4
133	Hierarchical MoS2–rGO nanosheets with high MoS2 loading with enhanced electro-catalytic performance. Applied Surface Science, 2015, 358, 152-158.	3.1	103
134	Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries. Journal of Materials Chemistry A, 2015, 3, 15184-15189.	5.2	21
135	Preparation of a porous nanostructured germanium from GeO ₂ via a "reduction–alloying–dealloying―approach. Journal of Materials Chemistry A, 2015, 3, 1427-1430.	5.2	24
136	Synergetic effect of the mineralization of organic contaminants by a combined use of permanganate and peroxymonosulfate. Separation and Purification Technology, 2015, 144, 248-255.	3.9	14
137	Cobalt Powder Production by Electro-Reduction of Co ₃ O ₄ Granules in Molten Carbonates Using an Inert Anode. Journal of the Electrochemical Society, 2015, 162, E68-E72.	1.3	41
138	Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. Journal of Power Sources, 2015, 298, 74-82.	4.0	42
139	g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Applied Surface Science, 2015, 358, 231-239.	3.1	125
140	A new implant with solid core and porous surface: The biocompatability with bone. Journal of Biomedical Materials Research - Part A, 2014, 102, 2395-2407.	2.1	16
141	The electrochemical reduction processes of solid compounds in high temperature molten salts. Chemical Society Reviews, 2014, 43, 3215.	18.7	210
142	Separation of dispersed carbon nanotubes from water: Effect of pH and surfactants on the aggregation at oil/water interface. Separation and Purification Technology, 2014, 129, 113-120.	3.9	11
143	Harvesting Capacitive Carbon by Carbonization of Waste Biomass in Molten Salts. Environmental Science & Technology, 2014, 48, 8101-8108.	4.6	151
144	Electropolymerization of PEDOT on CNTs conductive network assembled at water/oil interface. Electrochimica Acta, 2014, 136, 97-104.	2.6	22

#	Article	IF	CITATIONS
145	Inert Anode Development for High-Temperature Molten Salts. , 2013, , 171-186.		8
146	Electropolymerization of polypyrrole at the three-phase interline: Influence of polymerization conditions. Electrochimica Acta, 2013, 92, 108-116.	2.6	23
147	Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment. Corrosion Science, 2013, 75, 106-113.	3.0	124
148	Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochimica Acta, 2013, 114, 567-573.	2.6	93
149	Na ₂ SO ₄ -assisted synthesis of hexagonal-phase WO ₃ nanosheet assemblies with applicable electrochromic and adsorption properties. Journal of Materials Chemistry A, 2013, 1, 1261-1269.	5.2	83
150	Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3–Na2CO3 using an inert anode. Journal of Electroanalytical Chemistry, 2013, 689, 109-116.	1.9	27
151	Chemical mixing in molten-salt for preparation of high-performance spinel lithium manganese oxides: Duplication of morphology from nanostructured MnO2 precursors to targeting materials. Electrochimica Acta, 2013, 88, 756-765.	2.6	8
152	Growing highly capacitive nano-Ni(OH)2 on freshly cut graphite electrode by electrochemically enhanced self-assembly. Electrochimica Acta, 2013, 99, 198-203.	2.6	13
153	Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochimica Acta, 2013, 102, 369-374.	2.6	32
154	Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy and Environmental Science, 2013, 6, 1538.	15.6	262
155	Electrosynthesis of Ti ₂ CO _n from TiO ₂ /C Composite in Molten CaCl ₂ : Effect of Electrolysis Voltage and Duration. Journal of the Electrochemical Society, 2013, 160, F1192-F1196.	1.3	16
156	Production of Fine Tungsten Powder by Electrolytic Reduction of Solid CaWO ₄ in Molten Salt. Journal of the Electrochemical Society, 2012, 159, E139-E143.	1.3	25
157	Preparation of CeNi2 intermetallic compound by direct electroreduction of solid CeO2-2NiO in molten LiCl. Journal of Rare Earths, 2012, 30, 923-927.	2.5	19
158	Verification and implications of the dissolution–electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Advances, 2012, 2, 7588.	1.7	97
159	Electrochemical preparation of NiAl intermetallic compound from solid oxides in molten CaCl2 and its corrosion behaviors in NaCl aqueous solution. Materials Chemistry and Physics, 2012, 133, 465-470.	2.0	19
160	Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide. Journal of the Electrochemical Society, 2011, 158, E51.	1.3	101
161	Treatment of Reused Comprehensive Wastewater in Iron and Steel Industry With Electrosorption Technology. Journal of Iron and Steel Research International, 2011, 18, 37-42.	1.4	7
162	Fabrication of free-standing conductive polymer films through dynamic three-phase interline electropolymerization. Electrochemistry Communications, 2011, 13, 1479-1483.	2.3	16

#	Article	IF	CITATIONS
163	Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochemistry Communications, 2011, 13, 1521-1524.	2.3	74
164	On the development of metallic inert anode for molten CaCl2–CaO System. Electrochimica Acta, 2011, 56, 3296-3302.	2.6	63
165	Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. Journal of Electroanalytical Chemistry, 2010, 639, 130-140.	1.9	86
166	Cyclic Voltammetry of ZrO[sub 2] Powder in the Metallic Cavity Electrode in Molten CaCl[sub 2]. Journal of the Electrochemical Society, 2010, 157, F1.	1.3	39
167	Cyclic Voltammetry of Solid TiO2 in Molten Alkali Chlorides. ECS Transactions, 2010, 33, 273-276.	0.3	2
168	lonic liquids assisted formation of an oil/water emulsion stabilised by a carbon nanotube/ionic liquid composite layer. Physical Chemistry Chemical Physics, 2010, 12, 2535.	1.3	9
169	Solarâ€thermochromism of Pseudocrystalline Nanodroplets of Ionic Liquid–Ni ^{II} Complexes Immobilized inside Translucent Microporous PVDF Films. Advanced Materials, 2009, 21, 776-780.	11.1	59
170	Cyclic voltammetry of electroactive and insulative compounds in solid state: A revisit of AgCl in aqueous solutions assisted by metallic cavity electrode and chemically modified electrode. Journal of Electroanalytical Chemistry, 2009, 627, 28-40.	1.9	30
171	Affordable electrolytic ferrotitanium alloys with marine engineering potentials. Journal of Alloys and Compounds, 2009, 482, 320-327.	2.8	15
172	Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts. Journal of Materials Chemistry, 2009, 19, 2803.	6.7	34
173	Phase-Tunable Fabrication of Consolidated (α+β)-TiZr Alloys for Biomedical Applications through Molten Salt Electrolysis of Solid Oxides. Chemistry of Materials, 2009, 21, 5187-5195.	3.2	31
174	Thermo-solvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. Green Chemistry, 2008, 10, 296.	4.6	74
175	Solid state reactions: an electrochemical approach in molten salts. Annual Reports on the Progress of Chemistry Section C, 2008, 104, 189.	4.4	92
176	Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Physical Chemistry Chemical Physics, 2008, 10, 1809.	1.3	39
177	Electrochemical Conversion of Oxide Precursors to Consolidated Zr and Zrâ^'2.5Nb Tubes. Chemistry of Materials, 2008, 20, 7274-7280.	3.2	50
178	Roles of Cationic and Elemental Calcium in the Electro-Reduction of Solid Metal Oxides in Molten Calcium Chloride. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 292-302.	0.7	37
179	More affordable electrolytic LaNi5-type hydrogen storage powders. Chemical Communications, 2007, , 2515.	2.2	48
180	Thin Pellets:  Fast Electrochemical Preparation of Capacitor Tantalum Powders. Chemistry of Materials, 2007, 19, 153-160.	3.2	80

#	Article	IF	CITATIONS
181	Three-Phase Interlines Electrochemically Driven into Insulator Compounds: A Penetration Model and Its Verification by Electroreduction of Solid AgCl. Chemistry - A European Journal, 2007, 13, 604-612.	1.7	82
182	Electro-reduction of cuprous chloride powder to copper nanoparticles in an ionic liquid. Electrochemistry Communications, 2007, 9, 1374-1381.	2.3	65
183	Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochemistry Communications, 2007, 9, 1951-1957.	2.3	65
184	Extraction of titanium from different titania precursors by the FFC Cambridge process. Journal of Alloys and Compounds, 2006, 420, 37-45.	2.8	111
185	A direct electrochemical route from oxide precursors to the terbium–nickel intermetallic compound TbNi5. Electrochimica Acta, 2006, 51, 5785-5793.	2.6	59
186	Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2. Journal of Electroanalytical Chemistry, 2006, 589, 139-147.	1.9	42
187	Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Science Bulletin, 2006, 51, 2535-2540.	1.7	44
188	A Direct Electrochemical Route from Ilmenite to Hydrogen-Storage Ferrotitanium Alloys. Chemistry - A European Journal, 2006, 12, 5075-5081.	1.7	66
189	"Perovskitization―Assisted Electrochemical Reduction of Solid TiO2 in Molten CaCl2. Angewandte Chemie - International Edition, 2006, 45, 428-432.	7.2	115
190	Electrochemical Metallization of Solid Terbium Oxide. Angewandte Chemie - International Edition, 2006, 45, 2384-2388.	7.2	87
191	Electrochemically Driven Three-Phase Interlines into Insulator Compounds: Electroreduction of Solid SiO2 in Molten CaCl2. ChemPhysChem, 2006, 7, 1750-1758.	1.0	155
192	A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts. Journal of Electroanalytical Chemistry, 2005, 579, 321-328.	1.9	79
193	Unusual anodic behaviour of chloride ion in 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochemistry Communications, 2005, 7, 685-691.	2.3	53
194	Metallic Cavity Electrodes for Investigation of Powders. Journal of the Electrochemical Society, 2005, 152, E328.	1.3	83
195	Electrochemistry at Conductor/Insulator/Electrolyte Three-Phase Interlines:Â A Thin Layer Model. Journal of Physical Chemistry B, 2005, 109, 14043-14051.	1.2	138
196	A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corrosion Science, 2005, 47, 2157-2172.	3.0	42
197	Voltammetric Studies of Through-Space and Through-Bond Electrostatic Interactions in Alkyl Linked Ferrocene and Benzoaza-15-crown-5 Receptor Molecules in Acetonitrile. Journal of Physical Chemistry B, 2005, 109, 10658-10667.	1.2	12
198	Electrochemical Preparation of Silicon and Its Alloys from Solid Oxides in Molten Calcium Chloride. Angewandte Chemie - International Edition, 2004, 43, 733-736.	7.2	188

#	Article	IF	CITATIONS
199	Intramolecular Electrostatics: Coulomb's Law at Sub-Nanometers. ChemPhysChem, 2004, 5, 1623-1629.	1.0	13
200	Electrochemical Synthesis of LiTiO2and LiTi2O4in Molten LiCl. Chemistry of Materials, 2004, 16, 4324-4329.	3.2	55
201	A study on the filming kinetics of corrosion inhibitors in Fe/Na2SO4 system using EQCM. Corrosion Science, 2000, 42, 1379-1388.	3.0	9
202	Solid-state diffusion during the selective dissolution of brass: chronoamperometry and positron annihilation study. Electrochimica Acta, 1997, 42, 1733-1737.	2.6	32
203	A combinatorial electrode for highâ€ŧhroughput highâ€entropy alloy screening. ChemElectroChem, 0, , .	1.7	2
204	Electrochemical Preparation of Fe0.5CoNiCuSnx Medium Entropy Alloys and Their Corrosion Properties. Journal of the Electrochemical Society, 0, , .	1.3	2
205	Solidification of LiCl–Li2O oxide reduction salt into sodalite by a spark plasma sintering. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	0.7	Ο