List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313232/publications.pdf Version: 2024-02-01

	331259	433756
1,721	21	31
citations	h-index	g-index
113	113	1552
docs citations	times ranked	citing authors
	citations 113	1,72121citationsh-index113113

KOUSUKE TSUCHIYA

#	Article	IF	CITATIONS
1	Chemoenzymatic Polymerization of <scp>l</scp> -Serine Ethyl Ester in Aqueous Media without Side-Group Protection. ACS Polymers Au, 2022, 2, 147-156.	1.7	7
2	A silk composite fiber reinforced by telechelic-type polyalanine and its strengthening mechanism. Polymer Chemistry, 2022, 13, 1869-1879.	1.9	3
3	Non-transgenic Gene Modulation <i>via</i> Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano, 2022, 16, 3506-3521.	7.3	27
4	Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nature Communications, 2022, 13, 2417.	5.8	24
5	Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelleâ€Complexâ€Mediated DNA Delivery to Specific Plant Organelles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
6	Crystallization-induced mechanofluorescence for visualization of polymer crystallization. Nature Communications, 2021, 12, 126.	5.8	50
7	Synthetic Mitochondria-Targeting Peptides Incorporating α-Aminoisobutyric Acid with a Stable Amphiphilic Helix Conformation in Plant Cells. ACS Biomaterials Science and Engineering, 2021, 7, 1475-1484.	2.6	5
8	Visualization of the Necking Initiation and Propagation Processes during Uniaxial Tensile Deformation of Crystalline Polymer Films via the Generation of Fluorescent Radicals. ACS Macro Letters, 2021, 10, 623-627.	2.3	19
9	Nanoscale Polyion Complex Vesicles for Delivery of Cargo Proteins and Cas9 Ribonucleoprotein Complexes to Plant Cells. ACS Applied Nano Materials, 2021, 4, 5630-5635.	2.4	11
10	All-Peptide-Based Polyion Complex Vesicles: Facile Preparation and Encapsulation of the Protein in Active Form. ACS Polymers Au, 2021, 1, 30-38.	1.7	4
11	Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale, 2021, 13, 5679-5692.	2.8	26
12	Peptide-Based Polyion Complex Vesicles That Deliver Enzymes into Intact Plants To Provide Antibiotic Resistance without Genetic Modification. Biomacromolecules, 2021, 22, 1080-1090.	2.6	12
13	Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptides. Polymer Chemistry, 2020, 11, 560-567.	1.9	8
14	Development of Reactive Oxygen Species-Triggered Degradable Nanoparticles Using Oligoproline-Containing Peptides. Biomacromolecules, 2020, 21, 4116-4122.	2.6	6
15	Cellular internalization mechanism of novel Raman probes designed for plant cells. RSC Chemical Biology, 2020, 1, 204-208.	2.0	5
16	Dual Peptide-Based Gene Delivery System for the Efficient Transfection of Plant Callus Cells. Biomacromolecules, 2020, 21, 2735-2744.	2.6	25
17	Computational study on the polymerization reaction of <scp>d</scp> -aminopeptidase for the synthesis of <scp>d</scp> -peptides. RSC Advances, 2020, 10, 17582-17592.	1.7	5
18	Zwitterionic Polypeptides: Chemoenzymatic Synthesis and Loosening Function for Cellulose Crystals. Biomacromolecules, 2020, 21, 1785-1794.	2.6	8

#	Article	IF	CITATIONS
19	Poly(alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects. Polymer Chemistry, 2020, 11, 4920-4927.	1.9	6
20	Artificial Cell-Penetrating Peptide Containing Periodic α-Aminoisobutyric Acid with Long-Term Internalization Efficiency in Human and Plant Cells. ACS Biomaterials Science and Engineering, 2020, 6, 3287-3298.	2.6	28
21	Periodic introduction of aromatic units in polypeptides via chemoenzymatic polymerization to yield specific secondary structures with high thermal stability. Polymer Journal, 2019, 51, 1287-1298.	1.3	13
22	Insights into the Stereospecificity in Papain-Mediated Chemoenzymatic Polymerization from Quantum Mechanics/Molecular Mechanics Simulations. ACS Chemical Biology, 2019, 14, 1280-1292.	1.6	13
23	Molecular Interactions and Toughening Mechanisms in Silk Fibroin–Epoxy Resin Blend Films. Biomacromolecules, 2019, 20, 2295-2304.	2.6	34
24	Synthesis of Polypeptides. Green Chemistry and Sustainable Technology, 2019, , 233-265.	0.4	0
25	Development of regenerated silk films coated with fluorinated polypeptides to achieve high water repellency and biodegradability in seawater. Polymer Degradation and Stability, 2019, 160, 96-101.	2.7	13
26	Block Copolymer/Plasmid DNA Micelles Postmodified with Functional Peptides via Thiol–Maleimide Conjugation for Efficient Gene Delivery into Plants. Biomacromolecules, 2019, 20, 653-661.	2.6	38
27	Spider dragline silk composite films doped with linear and telechelic polyalanine: Effect of polyalanine on the structure and mechanical properties. Scientific Reports, 2018, 8, 3654.	1.6	17
28	Chemoenzymatic synthesis of polypeptides consisting of periodic di- and tri-peptide motifs similar to elastin. Polymer Chemistry, 2018, 9, 2336-2344.	1.9	15
29	Protease-Catalyzed Polymerization of Tripeptide Esters Containing Unnatural Amino Acids: α,α-Disubstituted and <i>N</i> -Alkylated Amino Acids. ACS Symposium Series, 2018, , 95-105.	0.5	2
30	Chemical Synthesis of Multiblock Copolypeptides Inspired by Spider Dragline Silk Proteins. ACS Macro Letters, 2017, 6, 103-106.	2.3	33
31	Tensile Reinforcement of Silk Films by the Addition of Telechelic-Type Polyalanine. Biomacromolecules, 2017, 18, 1002-1009.	2.6	31
32	Chemoenzymatic synthesis of polypeptides containing the unnatural amino acid 2-aminoisobutyric acid. Chemical Communications, 2017, 53, 7318-7321.	2.2	39
33	Hole Transporting Properties of Cyclic Pentamer of 4-Butyltriphenylamine. Chemistry Letters, 2017, 46, 1145-1147.	0.7	5
34	Synthesis of diblock copolymers consisting of POSS-containing random methacrylate copolymers and polystyrene and their cross-linked microphase-separated structure via fluoride ion-mediated cage scrambling. Polymer Chemistry, 2017, 8, 2516-2527.	1.9	16
35	Chemoenzymatic Synthesis of Polypeptides for Use as Functional and Structural Materials. Macromolecular Bioscience, 2017, 17, 1700177.	2.1	43
36	Papain atalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator. Macromolecular Bioscience, 2016, 16, 1001-1008.	2.1	21

#	Article	IF	CITATIONS
37	Synthesis and characterization of poly(3-hexylthiophene)- block -poly(dimethylsiloxane) for photovoltaic application. Polymer, 2016, 92, 125-132.	1.8	12
38	Synthesis and Characterization of Biobased Polyesters Derived from Vanillin-based Schiff Base and Cinnamic Acid Derivatives. Chemistry Letters, 2016, 45, 439-441.	0.7	11
39	Synthesis and Characterization of Biobased Poly (Ether Benzoxazole) Derived from Vanillin. Journal of Fiber Science and Technology, 2016, 72, 89-95.	0.2	4
40	The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization. Biomacromolecules, 2016, 17, 314-323.	2.6	33
41	Chemoenzymatic modification of silk fibroin with poly(2,6-dimethyl-1,5-phenylene ether) using horseradish peroxidase. RSC Advances, 2016, 6, 28737-28744.	1.7	15
42	Radical Copolymerization of Ferulic Acid Derivatives with Ethylenic Monomers. Journal of Fiber Science and Technology, 2016, 72, 74-79.	0.2	7
43	Refractive Index Modulation by Tunable Thermal Rearrangement of Polycyanurates. Chemistry Letters, 2015, 44, 1110-1112.	0.7	3
44	Synthesis of polyisocyanurates by thermal rearrangement of polycyanurates. Journal of Polymer Science Part A, 2015, 53, 692-698.	2.5	5
45	Synthesis of poly(arylene ether sulfone): 18-Crown-6 catalyzed phase-transfer polycondensation of bisphenol A with 4,4′-dichlorodiphenyl sulfone. Polymer Journal, 2015, 47, 353-354.	1.3	7
46	Dynamic Network Formation of POSS-Pendanted Polymer via Cage Scrambling Mediated by Fluoride Ion. Macromolecules, 2015, 48, 1636-1643.	2.2	16
47	Synthesis of methacrylate polymer bearing cyanate groups and its chemoselective reaction with amines. Journal of Polymer Science Part A, 2014, 52, 699-706.	2.5	5
48	Synthesis and characterization of polytriphenylamine based graft polymers forÂphotorefractive application. Polymer, 2013, 54, 269-276.	1.8	29
49	Catalytic oxidative polymerization of thiophene derivatives. Polymer Journal, 2013, 45, 281-286.	1.3	48
50	Electron Spectroscopy of Ultrathin Cycloalkane Films on Graphite (0001): Molecular Orbitals, Conformation, and Orientation. Chemistry Letters, 2013, 42, 1048-1050.	0.7	1
51	Fabrication of Ordered Poly[1,6-bis(3-nonyl-9-carbazolyl)-2,4-hexadiyne] Thin Film via Simple Spin-coating Process. Chemistry Letters, 2013, 42, 1217-1219.	0.7	2
52	Polyfluorene-Polytriarylamine Block Copolymer as an Additive for Electroluminescent Devices Based on Polymer Blends. Open Journal of Organic Polymer Materials, 2013, 03, 41-45.	2.0	2
53	Synthesis of Polyfluorene-Polytriarylamine Block Copolymer with Emitting Part at Junction Point for Light Emitting Applications. Open Journal of Organic Polymer Materials, 2013, 03, 46-52.	2.0	4
54	Synthesis of Polytriphenylamine with Emitting Part at Terminal for Light Emitting Application. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 333-334.	0.1	0

#	Article	IF	CITATIONS
55	Fast Photorefractive Response in Triphenylamine-based Molecular Glass. Chemistry Letters, 2012, 41, 1541-1543.	0.7	8
56	Synthesis of Polyfluorene Block Copolymers and Effect of Side Chain Group on Electroluminescent Device Performance. Chemistry Letters, 2012, 41, 257-259.	0.7	4
57	Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes. Physical Chemistry Chemical Physics, 2012, 14, 10114.	1.3	18
58	Synthesis and luminescent properties of block copolymers based on polyfluorene and polytriphenylamine. Polymer, 2012, 53, 1444-1452.	1.8	18
59	Stereo-Selective Synthesis of 5-Norbornene-2- <i>exo</i> -carboxylic Acid—Rapid Isomerization and Kinetically Selective Hydrolysis. International Journal of Organic Chemistry, 2012, 02, 26-30.	0.3	13
60	Synthesis and Characterization of Triarylamine-Based Block Copolymers by Combination of C-N Coupling and ATRP for Photorefractive Applications. Open Journal of Organic Polymer Materials, 2012, 02, 53-62.	2.0	3
61	Synthesis of Triphenylamine Copolymers and Effect of Their Chemical Structures on Physical Properties. Macromolecules, 2011, 44, 5200-5208.	2.2	10
62	Synthesis of Macrocyclic Aromatic Amines via C-N Coupling Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 169-170.	0.0	3
63	Facile Preparation of Macrocycles with Triphenylamine Backbone via C–N Coupling Reaction. Chemistry Letters, 2011, 40, 931-933.	0.7	12
64	Synthesis and Characterization of Triphenylamine-based Organic Photorefractive Glasses. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 329-335.	0.1	2
65	Synthesis and Evaluation of Adamantane-Containing Fluorinated Block Copolymers for Resist Modifers in Immersion Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 361-366.	0.1	3
66	Synthesis of Block Copolymer Based on Polyfluorenes and Application to Luminescent Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 343-344.	0.1	0
67	Annealing effect on performance and morphology of photovoltaic devices based on poly(3â€hexylthiophene)â€ <i>b</i> â€poly(ethylene oxide). Journal of Polymer Science Part A, 2011, 49, 2645-2652.	2.5	43
68	Fabrication of porous film based on poly(2,6-dimetyl-1,4-phenylene ether) block copolymer by supercritical carbon dioxide treatment. Reactive and Functional Polymers, 2011, 71, 958-963.	2.0	3
69	Synthesis of Diblock Copolymer Consisting of Poly(4-butyltriphenylamine) and Morphological Control in Photovoltaic Application. Polymers, 2011, 3, 1051-1064.	2.0	14
70	Synthesis and Characterization of Poly(3-hexylthiophene)-b-Polystyrene for Photovoltaic Application. Polymers, 2011, 3, 558-570.	2.0	36
71	Synthesis of Poly(3-hexylthiophene)-b-poly(ethylene oxide) for Application to Photovoltaic Device. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 405-406.	0.1	10
72	Synthesis of charge transporting block copolymers containing 2,7-dimethoxycarbazole units for light emitting device. Polymer, 2010, 51, 616-622.	1.8	23

#	Article	IF	CITATIONS
73	Poly(4-diphenylaminostyrene) with a well-defined polymer chain structure: Controllable optical and electrical properties. Polymer, 2010, 51, 1501-1506.	1.8	18
74	Synthesis of bipolar charge transporting block copolymers and characterization for organic lightâ€emitting diode. Journal of Polymer Science Part A, 2010, 48, 1461-1468.	2.5	20
75	Charge transporting block copolymer for morphological control in light emitting device based on polymer blends. Synthetic Metals, 2010, 160, 1679-1682.	2.1	15
76	Preparation of diblock copolymer based on poly(4-n-butyltriphenylamine) via palladium coupling polymerization. Polymer, 2009, 50, 95-101.	1.8	24
77	Stereo-Selective Synthesis of exo-Norbornene Derivatives for Resist Materials Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 365-370.	0.1	1
78	Preparation of poly(4-butyltriphenylamine) particles by chemical oxidative dispersion polymerization. Colloid and Polymer Science, 2008, 286, 313-318.	1.0	6
79	Synthesis and characterization of highly fluorescent polythiophene derivatives containing polystyrene sidearms. Journal of Polymer Science Part A, 2008, 46, 1003-1013.	2.5	31
80	Synthesis and Properties of a Novel Brush-type Copolymers Bearing Thiophene Backbone and 3-(N-carbazolyl)propyl Acrylate Side Chains for Light-emitting Applications. Polymer Journal, 2008, 40, 421-427.	1.3	19
81	Synthesis and Characterization of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 427 Td (oxide)- <i Chemistry Letters, 2008, 37, 350-351.</i 	>b-pol 0.7	y(4-butyltrip 4
82	Hydrophobic Surface Construction by Phase-Separation of Fluorinated Block Copolymer for Immersion Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 679-684.	0.1	6
83	A Negative-type Photosensitive Polymer Based on Poly(2,6-dimethyl-1,4-phenylene ether), a Cross-Linker and a Photoacid Generator. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 187-188.	0.1	2
84	A Negative Type Photosensitive Polymer Based on Poly(naphthylene ether), a Cross-Linker, and a Photoacid Generator with Low Dielectric Constant. Polymer Journal, 2007, 39, 442-447.	1.3	10
85	A Negative-type Photosensitive Polymer Based on Poly(2,6-dimethyl-1,4-phenylene ether), a Cross-Linker and a Photoacid Generator. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 2, 187-188.	0.1	0
86	Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. , 2006, 22, 391-397.		85
87	Synthesis of Poly(naphthylene ether) Containing Tetraphenylmethane Group with a Low Dielectric Constant. Polymer Journal, 2006, 38, 956-960.	1.3	11
88	Synthesis of a Novel Poly(binaphthylene ether) Containing Trifluoromethyl Groups with a Low Dielectric Constant. Macromolecules, 2006, 39, 3964-3966.	2.2	51
89	Supercritical CO 2 for high resolution photoresist development. , 2006, , .		2
90	High-Resolution Patterning of Molecular Glasses Using Supercritical Carbon Dioxide. Advanced Materials, 2006, 18, 442-446.	11.1	47

#	Article	IF	CITATIONS
91	Lithography Based on Molecular Glasses. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 431-434.	0.1	34
92	Materials for future lithography (Invited Paper). , 2005, 5753, 1.		18
93	Transition from quadrupedal to bipedal locomotion. , 2005, , .		10
94	Dynamic turning control of a quadruped robot using oscillator network. , 2004, , .		2
95	Turning control of a biped locomotion robot using nonlinear oscillators. , 2004, , .		16
96	Three-component, negative-type, alkaline-developable, thermally stable, and photosensitive polymer based on poly(2,6-dihydroxy-1,5-naphthalene), a crosslinker, and a photoacid generator. Journal of Polymer Science Part A, 2004, 42, 2235-2240.	2.5	15
97	A positive type alkaline developable thermally stable and photosensitive polymer based on partially O-methylated poly(2,6-dihydroxy-1,5-naphthylene), an acidolytic de-cross-linker, and a photoacid generator. Polymer, 2004, 45, 6873-6878.	1.8	10
98	Synthesis of a Novel Poly(binaphthylene ether) with a Low Dielectric Constant. Macromolecules, 2004, 37, 4794-4797.	2.2	60
99	A New Negative-Type Photosensitive Polymer Based on Poly (2,6-dihydroxy-1,5-naphthalene), a Cross-Linker, and a Photoacid Generator. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 285-286.	0.1	Ο
100	Tandem Type Polymerization. Synthesis and Characterization of Ordered Poly(amideâ^'thioether) from 2,6-Dichlorophenyl Methacrylate, 4,4â€~-Thiobis(benznenethiol), and 4,4â€~-Oxydianiline. Macromolecules, 2003, 36, 1815-1818.	2.2	6
101	A study on optimal motion of a biped locomotion machine. Artificial Life and Robotics, 1999, 3, 55-60.	0.7	4
102	A deterministic annealing algorithm for a combinatorial optimization problem by the use of replicator equations. , 0, , .		0
103	Adaptive gait pattern control of a quadruped locomotion robot. , 0, , .		73
104	Locomotion control of a multi-legged locomotion robot using oscillators. , 0, , .		10
105	Locomotion control of a biped locomotion robot using nonlinear oscillators. , 0, , .		44
106	Stability analysis of a simple walking model driven by a rhythmic signal. , 0, , .		2
107	Stability analysis of a simple walking model driven by a nonlinear oscillator. , 0, , .		3
108	Dynamic turning control of a quadruped robot using nonlinear oscillators. , 0, , .		8

Dynamic turning control of a quadruped robot using nonlinear oscillators. , 0, , . 108

7

#	Article	IF	CITATIONS
109	Feedback control of a simple walking model driven by an oscillator. , 0, , .		0
110	Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelleâ€Complexâ€Mediated DNA Delivery to Specific Plant Organelles. Angewandte Chemie, 0, , .	1.6	0