List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313081/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Importance of vaccine action and availability and epidemic severity for delaying the second vaccine dose. Scientific Reports, 2022, 12, 7638.	1.6	2
2	Air Pollution Modelling by Machine Learning Methods. Modelling, 2021, 2, 659-674.	0.8	1
3	On the relationship between the centroid and the footprint of uncertainty of Interval Type-2 fuzzy numbers. , 2020, , .		1
4	Black-box Evolutionary Search for Adversarial Examples against Deep Image Classifiers in Non-Targeted Attacks. , 2020, , .		2
5	Vulnerability of classifiers to evolutionary generated adversarial examples. Neural Networks, 2020, 127, 168-181.	3.3	24
6	Genens: An AutoML System for Ensemble Optimization Based on Developmental Genetic Programming. , 2020, , .		0
7	Multiobjective Evolution for Convolutional Neural Network Architecture Search. Lecture Notes in Computer Science, 2020, , 261-270.	1.0	0
8	Multi-objective Evolution for Deep Neural Network Architecture Search. Lecture Notes in Computer Science, 2020, , 270-281.	1.0	3
9	Hyperparameters Search Methods for Machine Learning Linear Workflows. , 2019, , .		5
10	On the boundaries of the centroid of a class of fuzzy numbers. , 2019, , .		1
11	Utilization of Genetic Programming to Solve a Simple Task Network Planning Problem. , 2018, , .		0
12	Deep Networks with RBF Layers to Prevent Adversarial Examples. Lecture Notes in Computer Science, 2018, , 257-266.	1.0	6
13	Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming. International Journal on Artificial Intelligence Tools, 2017, 26, 1760020.	0.7	2
14	Parallel evolutionary algorithm with interleaving generations. , 2017, , .		8
15	Combining top-down and bottom-up approaches for automated discovery of typed programs. , 2017, , .		3
16	Multi-objective evolution of machine learning workflows. , 2017, , .		0
17	Matching subtrees in genetic programming crossover operator. , 2017, , .		0

Algorithm Discovery with Monte-Carlo Search: Controlling the Size. , 2017, , .

2

#	Article	IF	CITATIONS
19	Unsupervised and Supervised Activity Analysis of Drone Sensor Data. Communications in Computer and Information Science, 2017, , 3-11.	0.4	1
20	Search Techniques for Automated Proposal of Data Mining Schemes. Communications in Computer and Information Science, 2016, , 84-90.	0.4	0
21	Evolutionary generation of adversarial examples for deep and shallow machine learning models. , 2016, , .		9
22	General tuning of weights in MOEA/D. , 2016, , .		5
23	Asynchronous Evolution of Data Mining Workflow Schemes by Strongly Typed Genetic Programming. , 2016, , .		4
24	Feature Extraction for Surrogate Models in Genetic Programming. Lecture Notes in Computer Science, 2016, , 335-344.	1.0	7
25	Sensor Data Air Pollution Prediction by Kernel Models. , 2016, , .		7
26	Determining Player Skill in the Game of Go with Deep Neural Networks. Lecture Notes in Computer Science, 2016, , 188-195.	1.0	2
27	Evolving Non-Linear Stacking Ensembles for Prediction of Go Player Attributes. , 2015, , .		4
28	A Dynamic Programming Approach to Individual Initialization in Genetic Programming. , 2015, , .		1
29	Evolving Workflow Graphs Using Typed Genetic Programming. , 2015, , .		2
30	Evaluating Go game records for prediction of player attributes. , 2015, , .		4
31	Multi-Objective Genetic Programming for Dataset Similarity Induction. , 2015, , .		Ο
32	Hypervolume-Based Surrogate Model for MO-CMA-ES. , 2015, , .		2
33	Computational intelligence, fuzzy systems, and machine learning: Academic vs industrial learning. , 2015, , .		Ο
34	Co-evolutionary genetic programming for dataset similarity induction. , 2015, , .		1
35	Incorporating User Preferences in MOEA/D through the Coevolution of Weights. , 2015, , .		10
36	Choosing an appropriate hydrological model for rainfall-runoff extremes in small catchments. Soil and Water Research, 2015, 10, 137-146.	0.7	10

#	Article	IF	CITATIONS
37	Data Mining Process Optimization in Computational Multi-agent Systems. Lecture Notes in Computer Science, 2015, , 93-103.	1.0	4
38	Product Multi-kernels for Sensor Data Analysis. Lecture Notes in Computer Science, 2015, , 123-133.	1.0	0
39	Comparing datasets by attribute alignment. , 2014, , .		3
40	Hypervolume-based local search in multi-objective evolutionary optimization. , 2014, , .		13
41	Utilization of reductions and abstraction elimination in typed genetic programming. , 2014, , .		0
42	The effect of different local search algorithms on the performance of multi-objective optimizers. , 2014, , .		4
43	Multiobjective Genetic Programming of Agent Decision Strategies. Advances in Intelligent Systems and Computing, 2014, , 173-182.	0.5	1
44	Multiobjectivization for classifier parameter tuning. , 2013, , .		2
45	Multi-objectivization and Surrogate Modelling for Neural Network Hyper-parameters Tuning. Communications in Computer and Information Science, 2013, , 61-66.	0.4	3
46	Using Genetic Programming to Estimate Performance of Computational Intelligence Models. Lecture Notes in Computer Science, 2013, , 169-178.	1.0	3
47	Aggregate meta-models for evolutionary multiobjective and many-objective optimization. Neurocomputing, 2013, 116, 392-402.	3.5	23
48	Evolutionary optimization of meta data metric for method recommendation. , 2013, , .		3
49	Two-Phase Genetic Algorithm for Social Network Graphs Clustering. , 2013, , .		7
50	Surrogate model selection for evolutionary multiobjective optimization. , 2013, , .		5
51	Clustering Based Classification in Data Mining Method Recommendation. , 2013, , .		2
52	Role-Based Management and Matchmaking in Data-Mining Multi-Agent Systems. Lecture Notes in Computer Science, 2013, , 22-35.	1.0	1
53	A surrogate multiobjective evolutionary strategy with local search and pre-selection. , 2012, , .		2
54	Meta-learning and Model Selection in Multi-objective Evolutionary Algorithms. , 2012, , .		6

#	Article	IF	CITATIONS
55	A Surrogate Based Multiobjective Evolution Strategy with Different Models for Local Search and Pre-selection. , 2012, , .		3
56	A Novel Meta Learning System and Its Application to Optimization of Computing Agents' Results. , 2012, , .		2
57	An Evolutionary Strategy for Surrogate-Based Multiobjective Optimization. , 2012, , .		8
58	Combining Parameter Space Search and Meta-learning for Data-Dependent Computational Agent Recommendation. , 2012, , .		3
59	An evolutionary algorithm for 2D semi-guillotinable circular saw cutting. , 2012, , .		Ο
60	Evolving Decision Strategies for Computational Intelligence Agents. Lecture Notes in Computer Science, 2012, , 213-220.	1.0	1
61	Exploration and Exploitation Operators for Genetic Graph Clustering Algorithm. Lecture Notes in Computer Science, 2012, , 87-92.	1.0	1
62	Role Model of Search in Agents' Parameter-Space. , 2011, , .		0
63	Evolutionary learning of regularization networks with product kernel units. , 2011, , .		2
64	Meta Learning in Multi-agent Systems for Data Mining. , 2011, , .		17
65	LAMM-MMA., 2011, , .		5
66	Implementation of Parameter Space Search for Meta Learning in a Data-Mining Multi-agent System. , 2011, , .		5
67	ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. , 2011, , .		17
68	Improving many-objective optimizers with aggregate meta-models. , 2011, , .		3
69	Process Mediation. Advances in E-Business Research Series, 2011, , 77-104.	0.2	0
70	Evolving Sum and Composite Kernel Functions for Regularization Networks. Lecture Notes in Computer Science, 2011, , 180-189.	1.0	4
71	Evolutionary Learning of Regularization Networks with Multi-kernel Units. Lecture Notes in Computer Science, 2011, , 538-546.	1.0	0
72	Local Meta-models for ASM-MOMA. Lecture Notes in Computer Science, 2011, , 147-152.	1.0	0

#	Article	IF	CITATIONS
73	Local Search Heuristics for Robotic Routing Planner. Lecture Notes in Computer Science, 2011, , 31-40.	1.0	Ο
74	Comparison of behavior-based and planning techniques on the small robot maze exploration problem. Neural Networks, 2010, 23, 560-567.	3.3	6
75	Editorial. Neural Networks, 2010, 23, 465.	3.3	2
76	Combining multiobjective and single-objective genetic algorithms in heterogeneous island model. , 2010, , .		6
77	Role-based design of computational intelligence multi-agent system. , 2010, , .		7
78	Ontology Description of Jade Computational Agents in OWL-DL. , 2010, , .		1
79	Real Time Robot Path Planning and Cleaning. Lecture Notes in Computer Science, 2010, , 442-449.	1.0	2
80	Memetic Evolutionary Learning for Local Unit Networks. Lecture Notes in Computer Science, 2010, , 534-541.	1.0	0
81	Description, Composition, and Decision Support for Multiagent Computational Systems. , 2009, , .		Ο
82	The process mediation framework for semantic web services. International Journal of Agent Oriented Software Engineering, 2009, 3, 27.	0.1	24
83	Behavior Emergence in Autonomous Robot Control by Means of Evolutionary Neural Networks. Lecture Notes in Electrical Engineering, 2009, , 235-247.	0.3	1
84	Towards Data-Driven Hybrid Composition of Data Mining Multi-agent Systems. Studies in Computational Intelligence, 2009, , 271-281.	0.7	0
85	Implementing Boolean Matrix Factorization. Lecture Notes in Computer Science, 2008, , 543-552.	1.0	4
86	Evolutionary trained radial basis function networks for robot control. , 2008, , .		2
87	Hybrid Search Methods for Automatic Discovery of Computational Agent Schemes. , 2008, , .		Ο
88	Towards Extending Service Discovery with Automated Composition Capabilities. , 2008, , .		5
89	Modeling and Discovery of Data Providing Services. , 2008, , .		38
90	Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks. , 2008, , .		2

#	Article	IF	CITATIONS
91	Performance Comparison of Relational Reinforcement Learning and RBF Neural Networks for Small Mobile Robots. , 2008, , .		2
92	Rule-Based Analysis of Behaviour Learned by Evolutionary and Reinforcement Algorithms. Lecture Notes in Computer Science, 2008, , 284-291.	1.0	1
93	An Agent for Asymmetric Process Mediation in Open Environments. , 2008, , 104-117.		13
94	Testing Error Estimates for Regularization and Radial Function Networks. Lecture Notes in Computer Science, 2008, , 549-554.	1.0	1
95	Variants of Memetic And Hybrid Learning of Perceptron Networks. , 2007, , .		4
96	Evolving neural network which control a robotic agent. , 2007, , .		1
97	Hybrid evolutionary algorithm for multilayer perceptron networks with competitive performance. , 2007, , .		1
98	Cooperation of Computational Intelligence Agents. , 2006, , .		0
99	Emerging Hybrid Computational Models. Lecture Notes in Computer Science, 2006, , 379-389.	1.0	3
100	Faster Learning with Overlapping Neural Assemblies. Lecture Notes in Computer Science, 2006, , 226-233.	1.0	0
101	Description and Generation of Computational Agents. Lecture Notes in Computer Science, 2006, , 318-329.	1.0	1
102	Learning methods for radial basis function networks. Future Generation Computer Systems, 2005, 21, 1131-1142.	4.9	65
103	Autonomous Behavior of Computational Agents. , 2005, , 514-517.		1
104	Kernel Based Learning Methods: Regularization Networks and RBF Networks. Lecture Notes in Computer Science, 2005, , 124-136.	1.0	0
105	Towards building computational agent schemes. , 2003, , 210-215.		1
106	To contemplate quantitative and qualitative water features by neural networks method. Plant, Soil and Environment, 2002, 48, 322-326.	1.0	1
107	Variants of Learning Algorithm Based on Kolmogorov Theorem. Lecture Notes in Computer Science, 2002, , 536-543.	1.0	0
108	More Autonomous Hybrid Models in Bang2. Lecture Notes in Computer Science, 2001, , 935-942.	1.0	3

#	Article	IF	CITATIONS
109	Implementation of Kolmogorov Learning Algorithm for Feedforward Neural Networks. Lecture Notes in Computer Science, 2001, , 986-995.	1.0	2
110	Multi-Agent Environment for Hybrid Al Models. , 2001, , 359-362.		1
111	Functional Equivalence and Genetic Learning of RBF Networks. , 1995, , 53-56.		14
112	Yet another genetic algorithm for feed-forward neural networks. , 0, , .		0
113	Back propagation in realistic parallel environment. , 0, , .		1
114	Kolmogorov learning for feedforward networks. , 0, , .		4
115	Efficient parallel implementation of Kolmogorov superpositions. , 0, , .		0
116	Bang 3: a computational multi-agent system. , 0, , .		6
117	Estimating and Measuring Performance of Computational Agents. , 0, , .		Ο
118	Implementing GP on Optimizing both Boolean and Extended Boolean Queries in IR and Fuzzy IR systems with Respect to the Users Profiles. , 0, , .		12
119	Evolving KERAS Architectures for Sensor Data Analysis. , 0, , .		17