Pier Giorgio Mastroberardino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8313024/publications.pdf Version: 2024-02-01

PIER GIORGIO

#	Article	IF	CITATIONS
1	The Coming of Age for Big Data in Systems Radiobiology, an Engineering Perspective. Big Data, 2021, 9, 63-71.	2.1	2
2	Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death and Differentiation, 2021, 28, 1720-1732.	5.0	6
3	Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neuro-Oncology Advances, 2021, 3, vdab103.	0.4	10
4	The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Archives of Biochemistry and Biophysics, 2021, 710, 108977.	1.4	7
5	A perspective on DNA damage-induced potentiation of the pentose phosphate shunt and reductive stress in chemoresistance. Molecular and Cellular Oncology, 2020, 7, 1733383.	0.3	2
6	DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nature Communications, 2019, 10, 4887.	5.8	43
7	Peripheral mitochondrial function correlates with clinical severity in idiopathic Parkinson's disease. Movement Disorders, 2019, 34, 1192-1202.	2.2	23
8	Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease. Current Opinion in Physiology, 2019, 9, 73-78.	0.9	7
9	Endocytic iron trafficking and mitochondria in Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2019, 110, 70-74.	1.2	15
10	TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities. American Journal of Human Genetics, 2019, 105, 1126-1147.	2.6	25
11	Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?. Trends in Immunology, 2019, 40, 113-127.	2.9	125
12	Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease. Antioxidants and Redox Signaling, 2018, 28, 44-61.	2.5	21
13	Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurology: Genetics, 2018, 4, e275.	0.9	15
14	Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovascular Research, 2018, 114, 1776-1793.	1.8	47
15	Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death and Disease, 2018, 9, 818.	2.7	85
16	A33â€Differences in bioenergetic status in patient-derived fibroblast cells are associated with age of onset in huntington disease. , 2018, , .		0
17	Editorial: Neuronal Self-Defense: Compensatory Mechanisms in Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 2016, 9, 499.	1.8	3
18	Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease. Cell Reports, 2016, 15, 1866-1875.	2.9	93

Pier Giorgio

#	Article	IF	CITATIONS
19	Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell, 2016, 19, 613-627.	5.2	277
20	Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery. BMC Bioinformatics, 2016, 17, 212.	1.2	5
21	Women have more potential to induce browning of perirenal adipose tissue than men. Obesity, 2015, 23, 1671-1679.	1.5	49
22	Metals and neurodegeneration. Neurobiology of Disease, 2015, 81, 1-3.	2.1	19
23	Low-Dose Ionizing Radiation Rapidly Affects Mitochondrial and Synaptic Signaling Pathways in Murine Hippocampus and Cortex. Journal of Proteome Research, 2015, 14, 2055-2064.	1.8	45
24	Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex. Journal of Proteome Research, 2015, 14, 4674-4686.	1.8	23
25	Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function. Cell Reports, 2015, 13, 733-745.	2.9	167
26	Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2066-2074.	1.8	44
27	Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB Journal, 2014, 28, 4857-4867.	0.2	68
28	Defects in Mitochondrial Clearance Predispose Human Monocytes to Interleukin-1β Hypersecretion. Journal of Biological Chemistry, 2014, 289, 5000-5012.	1.6	90
29	Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiology of Disease, 2014, 70, 214-223.	2.1	155
30	Type 2 Transglutaminase, mitochondria and Huntington's disease: Menage a trois. Mitochondrion, 2014, 19, 97-104.	1.6	18
31	Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1385-1394.	1.8	59
32	Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging. Neurobiology of Aging, 2014, 35, 96-108.	1.5	37
33	Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577.	1.3	25
34	PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function. Stem Cell Reports, 2013, 1, 560-574.	2.3	59
35	Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: Implications for epileptogenesis. Neurobiology of Disease, 2013, 49, 87-98.	2.1	43
36	Redox Status and Bioenergetics Liaison in Cancer and Neurodegeneration. International Journal of Cell Biology, 2012, 2012, 1-5.	1.0	7

Pier Giorgio

#	Article	IF	CITATIONS
37	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	2.5	70
38	Embryonic mouse blood flow and oxygen correlate with early pancreatic differentiation. Developmental Biology, 2011, 349, 342-349.	0.9	41
39	Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiology of Disease, 2011, 42, 482-495.	2.1	82
40	Lessons from the rotenone model of Parkinson's disease. Trends in Pharmacological Sciences, 2010, 31, 141-142.	4.0	127
41	Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c. Journal of Biological Chemistry, 2009, 284, 15951-15969.	1.6	86
42	A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiology of Disease, 2009, 34, 417-431.	2.1	162
43	A FRET-based method to study protein thiol oxidation in histological preparations. Free Radical Biology and Medicine, 2008, 45, 971-981.	1.3	30
44	Chapter Ten More Than Two Sides of a Coin?. Methods in Enzymology, 2008, 442, 201-212.	0.4	2
45	N-Terminal Mutant Huntingtin Associates with Mitochondria and Impairs Mitochondrial Trafficking. Journal of Neuroscience, 2008, 28, 2783-2792.	1.7	362
46	Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. Journal of Neurochemistry, 2007, 100, 36-49.	2.1	57
47	"Tissue―transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1357-1365.	0.5	67
48	Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiology of Disease, 2006, 22, 404-420.	2.1	313
49	Type 2 Transglutaminase and Cell Death. , 2005, 38, 58-74.		32
50	AIF deficiency compromises oxidative phosphorylation. EMBO Journal, 2004, 23, 4679-4689.	3.5	576
51	Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7812-7817.	3.3	249