
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immune detection of lipid oxidation as a threat assessment strategy. Nature Reviews Immunology, 2022, 22, 322-330.	10.6	57
2	Gasdermin Pore Forming Activities that Promote Inflammation from Living and Dead Cells. Journal of Molecular Biology, 2022, 434, 167427.	2.0	6
3	Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host and Microbe, 2022, 30, 216-231.e5.	5.1	6
4	Control of innate immunity by the <scp>cGASâ€STING</scp> pathway. Immunology and Cell Biology, 2022, 100, 409-423.	1.0	12
5	Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Science Immunology, 2021, 6, .	5.6	21
6	Interferon-Independent Restriction of RNA Virus Entry and Replication by a Class of Damage-Associated Molecular Patterns. MBio, 2021, 12, .	1.8	5
7	Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
8	Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity, 2021, 54, 1447-1462.e5.	6.6	72
9	NLRP3 inflammasomes that induce antitumor immunity. Trends in Immunology, 2021, 42, 575-589.	2.9	29
10	Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 2021, 184, 4495-4511.e19.	13.5	201
11	Evolution-inspired redesign of the LPS receptor caspase-4 into an interleukin-1β–converting enzyme. Science Immunology, 2021, 6, .	5.6	20
12	TBK1 and IKKε act like an OFF switch to limit NLRP3 inflammasome pathway activation. Proceedings of the United States of America, 2021, 118, .	3.3	22
13	Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Molecular Microbiology, 2021, 116, 1420-1432.	1.2	14
14	Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae. Biomolecules, 2021, 11, 1737.	1.8	4
15	Lipids that directly regulate innate immune signal transduction. Innate Immunity, 2020, 26, 4-14.	1.1	23
16	Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells. Nature Microbiology, 2020, 5, 181-191.	5.9	45
17	Mitochondrial Reactive Oxygen Species Participate in Signaling Triggered by Heme in Macrophages and upon Hemolysis. Journal of Immunology, 2020, 205, 2795-2805.	0.4	20
18	Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Reports, 2020, 33, 108381.	2.9	86

#	Article	IF	CITATIONS
19	HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science, 2020, 369, .	6.0	218
20	Host-Encoded Sensors of Bacteria. , 2020, , 277-286.		0
21	Toll-like Receptors and the Control of Immunity. Cell, 2020, 180, 1044-1066.	13.5	1,099
22	Gasdermin D activity in inflammation and host defense. Science Immunology, 2019, 4, .	5.6	119
23	Inflammasomes: Threat-Assessment Organelles of the Innate Immune System. Immunity, 2019, 51, 609-624.	6.6	118
24	Host-Encoded Sensors of Bacteria: Our Windows into the Microbial World. Microbiology Spectrum, 2019, 7, .	1.2	5
25	Modular Architecture of the STING C-Terminal Tail Allows Interferon and NF-κB Signaling Adaptation. Cell Reports, 2019, 27, 1165-1175.e5.	2.9	139
26	Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell, 2019, 177, 384-398.e11.	13.5	86
27	Phosphoinositide Interactions Position cGAS at the Plasma Membrane to Ensure Efficient Distinction between Self- and Viral DNA. Cell, 2019, 176, 1432-1446.e11.	13.5	171
28	Defying Death: The (W)hole Truth about the Fate of GSDMD Pores. Immunity, 2019, 50, 15-17.	6.6	22
29	STINC-dependent translation inhibition restricts RNA virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2058-E2067.	3.3	131
30	How Inflammasomes Inform Adaptive Immunity. Journal of Molecular Biology, 2018, 430, 217-237.	2.0	145
31	Biochemical Isolation of the Myddosome from Murine Macrophages. Methods in Molecular Biology, 2018, 1714, 79-95.	0.4	4
32	The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 2018, 48, 35-44.e6.	6.6	789
33	Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology, 2018, 39, 862-873.	2.9	33
34	The Fly Way of Antiviral Resistance and Disease Tolerance. Advances in Immunology, 2018, 140, 59-93.	1.1	8
35	An Antiviral Branch of the IL-1 Signaling Pathway Restricts Immune-Evasive Virus Replication. Molecular Cell, 2018, 71, 825-840.e6.	4.5	72
36	Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes and Infection, 2017, 19, 229-237.	1.0	34

#	Article	IF	CITATIONS
37	Multi-receptor detection of individual bacterial products by the innate immune system. Nature Reviews Immunology, 2017, 17, 376-390.	10.6	163
38	Innate Immune Receptors as Competitive Determinants of Cell Fate. Molecular Cell, 2017, 66, 750-760.	4.5	47
39	Lipopolysaccharide Detection across the Kingdoms of Life. Trends in Immunology, 2017, 38, 696-704.	2.9	57
40	Type III IFNs Are Commonly Induced by Bacteria-Sensing TLRs and Reinforce Epithelial Barriers during Infection. Journal of Immunology, 2017, 199, 3270-3279.	0.4	79
41	By Capturing Inflammatory Lipids Released from Dying Cells, the Receptor CD14 Induces Inflammasome-Dependent Phagocyte Hyperactivation. Immunity, 2017, 47, 697-709.e3.	6.6	149
42	Apoptosis and Necroptosis as Host Defense Strategies to Prevent Viral Infection. Trends in Cell Biology, 2017, 27, 800-809.	3.6	189
43	Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections. Cell Host and Microbe, 2017, 22, 48-60.e5.	5.1	5
44	Microbeâ€inducible trafficking pathways that control Tollâ€like receptor signaling. Traffic, 2017, 18, 6-17.	1.3	27
45	Early innate immune responses to bacterial LPS. Current Opinion in Immunology, 2017, 44, 14-19.	2.4	253
46	An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016, 352, 1232-1236.	6.0	419
47	Editorial overview: Emerging concepts in host-virus interactions. Current Opinion in Microbiology, 2016, 32, xii-xiii.	2.3	0
48	A one-protein signaling pathway in the innate immune system. Science Immunology, 2016, 1, eaah6184.	5.6	4
49	Control of the innate immune response by the mevalonate pathway. Nature Immunology, 2016, 17, 922-929.	7.0	159
50	A Single Bacterial Immune Evasion Strategy Dismantles Both MyD88 and TRIF Signaling Pathways Downstream of TLR4. Cell Host and Microbe, 2015, 18, 682-693.	5.1	44
51	Microbial strategies for antagonizing Toll-like-receptor signal transduction. Current Opinion in Immunology, 2015, 32, 61-70.	2.4	37
52	Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology, 2015, 33, 257-290.	9.5	1,133
53	PRRs are watching you: Localization of innate sensing and signaling regulators. Virology, 2015, 479-480, 104-109.	1.1	100
54	The unique regulation and functions of type III interferons in antiviral immunity. Current Opinion in Virology, 2015, 12, 47-52.	2.6	69

#	Article	IF	CITATIONS
55	Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria. Immunity, 2015, 43, 909-922.	6.6	131
56	Emerging Principles Governing Signal Transduction by Pattern-Recognition Receptors: Table 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a016253.	2.3	41
57	Finding a needle in a haystack of needles – a productive hunt for interferon stimulated genes with antiviral activity. Immunology and Cell Biology, 2014, 92, 205-207.	1.0	1
58	Late Endosomal Trafficking of Alternative Serotype Adenovirus Vaccine Vectors Augments Antiviral Innate Immunity. Journal of Virology, 2014, 88, 10354-10363.	1.5	49
59	Endosomes as Platforms for NOD-like Receptor Signaling. Cell Host and Microbe, 2014, 15, 523-525.	5.1	33
60	A Bicistronic MAVS Transcript Highlights a Class of Truncated Variants in Antiviral Immunity. Cell, 2014, 156, 800-811.	13.5	125
61	A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-like Receptor Signal Transduction. Cell, 2014, 156, 705-716.	13.5	192
62	SMOCs: supramolecular organizing centres that control innate immunity. Nature Reviews Immunology, 2014, 14, 821-826.	10.6	220
63	Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology, 2014, 15, 717-726.	7.0	311
64	A Cross-Disciplinary Perspective on the Innate Immune Responses to Bacterial Lipopolysaccharide. Molecular Cell, 2014, 54, 212-223.	4.5	155
65	Common mechanisms activate plant guard receptors and TLR4. Trends in Immunology, 2014, 35, 454-456.	2.9	5
66	Recognition for an Innate Explorer. Cell, 2013, 154, 261-264.	13.5	0
67	NLRP3 inflammasome activation: CD36 serves double duty. Nature Immunology, 2013, 14, 772-774.	7.0	26
68	Sensing Endotoxins from Within. Science, 2013, 341, 1184-1185.	6.0	13
69	Intracellular Pathogen Detection by RIG-I-Like Receptors. Advances in Immunology, 2013, 117, 99-125.	1.1	147
70	Peroxisomes and the Antiviral Responses of Mammalian Cells. Sub-Cellular Biochemistry, 2013, 69, 67-75.	1.0	19
71	Polymorphisms in Toll-Like Receptor 4 Underlie Susceptibility to Tumor Induction by the Mouse Polyomavirus. Journal of Virology, 2012, 86, 11541-11547.	1.5	6
72	Defining the subcellular sites of innate immune signal transduction. Trends in Immunology, 2012, 33, 442-448.	2.9	42

#	Article	IF	CITATIONS
73	Signaling Organelles of the Innate Immune System. Cell, 2012, 151, 1168-1178.	13.5	105
74	Phosphoinositide Binding by the Toll Adaptor dMyD88 Controls Antibacterial Responses in Drosophila. Immunity, 2012, 36, 612-622.	6.6	45
75	Phagosome as the Organelle Linking Innate and Adaptive Immunity. Traffic, 2012, 13, 1053-1061.	1.3	59
76	CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell, 2011, 147, 868-880.	13.5	765
77	Deciphering the function of nucleic acid sensing TLRs one regulatory step at a time. Frontiers in Bioscience - Landmark, 2011, 16, 2060.	3.0	11
78	Regulation of Lipopolysaccharide-Induced Translation of Tumor Necrosis Factor-Alpha by the Toll-Like Receptor 4 Adaptor Protein TRAM. Journal of Innate Immunity, 2011, 3, 437-446.	1.8	20
79	Recycling Endosomes and TLR Signaling— The Rab11 GTPase Leads the Way. Immunity, 2010, 33, 578-580.	6.6	10
80	"Complementing" Toll Signaling. Science Signaling, 2010, 3, pe15.	1.6	8
81	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	13.5	717
82	A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews Immunology, 2009, 9, 535-542.	10.6	611
83	Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. Journal of Clinical Investigation, 2009, 119, 3322-8.	3.9	135
84	TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunology, 2008, 9, 361-368.	7.0	1,071
85	Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling. Cell, 2006, 125, 943-955.	13.5	744
86	Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunology, 2006, 7, 49-56.	7.0	598
87	A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 826-831.	3.3	262
88	Legionella Subvert the Functions of Rab1 and Sec22b to Create a Replicative Organelle. Journal of Experimental Medicine, 2004, 199, 1201-1211.	4.2	287
89	A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes. Science, 2002, 295, 679-682.	6.0	530
90	Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature Cell Biology, 2002, 4, 945-954.	4.6	420

#	Article	IF	CITATIONS
91	Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Molecular Microbiology, 2000, 38, 719-736.	1.2	166
92	Safety of Autologous, Ex Vivo-Expanded Human Immunodeficiency Virus (HIV)-Specific Cytotoxic T-Lymphocyte Infusion in HIV-Infected Patients. Blood, 1997, 90, 2196-2206.	0.6	86
93	Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	13