
Jung-Wook Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312925/publications.pdf Version: 2024-02-01

LUNC-WOOK CHO

#	Article	IF	CITATIONS
1	Effects of Li2O on structure of CaO-SiO2-CaF2-Na2O glasses and origin of crystallization delay. Journal of Molecular Liquids, 2022, 347, 117997.	2.3	5
2	Architectured heterogeneous alloys with selective laser melting. Scripta Materialia, 2022, 208, 114332.	2.6	27
3	Structural evidence of mixed alkali effect for aluminoborosilicate glasses. Journal of Molecular Liquids, 2022, 347, 118319.	2.3	5
4	Numerical modeling of oxide particle evolution during additive manufacturing. Additive Manufacturing, 2022, 51, 102631.	1.7	2
5	Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143318.	2.6	11
6	Structure and crystallization behavior of complex mold flux glasses in the system CaOâ€Na₂Oâ€Li₂Oâ€EiO A multiâ€nuclear NMR spectroscopic study . Journal of the American Ceramic Society, 2022, 105, 6140-6148.	<sub32< s<="" td=""><td>sub₁:</td></sub32<>	sub ₁ :
7	Glass structure and crystallization via two distinct thermal histories: Melt crystallization and glass crystallization. Journal of the European Ceramic Society, 2021, 41, 831-837.	2.8	6
8	Effect of Li2O on melt crystallization of CaO–SiO2–CaF2 based glasses. Ceramics International, 2021, 47, 6773-6778.	2.3	9
9	Influence of Silicon Carbide on Shear-Thinning Behavior of CaO-SiO2-CaF2-Based Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2048-2055.	1.0	2
10	Effect of Li2O on Non-Isothermal Crystallization of Cuspidine in CaO–SiO2–CaF2 Glasses. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2186-2193.	1.0	7
11	Melt pool oxidation and reduction in powder bed fusion. Additive Manufacturing, 2021, 41, 101982.	1.7	3
12	Editorial: Advances in Steel Manufacturing and Processing. Frontiers in Materials, 2021, 8, .	1.2	2
13	Direct energy deposition of ultrastrong WC-12Co cemented carbide: Fabrication, microstructure and compressive properties. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105591.	1.7	13
14	Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Additive Manufacturing, 2021, 47, 102314.	1.7	13
15	Effect of Zr addition on metastable Liquid-Liquid Phase Separation of Cu-Fe alloys. Scripta Materialia, 2021, 205, 114218.	2.6	21
16	Nondestructive evaluation of micro-oxide inclusions in additively manufactured metal parts using nonlinear ultrasonic technique. Journal of Materials Processing Technology, 2021, 298, 117281.	3.1	16
17	High temperature endurable metal matrix composite reinforced with continuously networked TiN. Journal of Alloys and Compounds, 2021, 889, 161633.	2.8	3
18	Non-metallic inclusions in electroslag remelting: a review. Journal of Iron and Steel Research International, 2021, 28, 1483-1503.	1.4	14

Јинд-*W*оок Сно

#	Article	IF	CITATIONS
19	Effect of SiO2 substitution with Al2O3 during high-Al TRIP steel casting on crystallization and structure of low-basicity CaO–SiO2-based mold flux. Journal of Iron and Steel Research International, 2020, 27, 33-41.	1.4	16
20	Structure and its effect on viscosity of fluorine-free mold flux: Substituting CaF2 with B2O3 and Na2O. Journal of Non-Crystalline Solids, 2020, 529, 119756.	1.5	24
21	Heat transfer control by dispersed metallic particles in glassy mold flux film for continuous steel casting. Journal of the American Ceramic Society, 2020, 103, 5678-5687.	1.9	10
22	Slag Pool Depth Effectiveness of Molten Mold Flux Feeding Technology. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1965-1972.	1.0	6
23	Controlling inclusion evolution behavior by adjusting flow rate of shielding gas during direct energy deposition of AISI 316â€ [–] L. Additive Manufacturing, 2020, 33, 101119.	1.7	5
24	Crystallization and vitrification behavior of CaO-SiO2-FetO-Al2O3 slag: Fundamentals to use mineral wastes in production of glass ball. Journal of Cleaner Production, 2019, 225, 743-754.	4.6	22
25	Thermal history driven molecular structure transitions in aluminoâ€borosilicate glass. Journal of the American Ceramic Society, 2018, 101, 3271-3275.	1.9	12
26	Highlighting a rheological behavior of glass melt at high temperature. Journal of Non-Crystalline Solids, 2018, 499, 41-48.	1.5	3
27	Inclusion evolution in additive manufactured 316L stainless steel by laser metal deposition process. Materials and Design, 2018, 155, 212-219.	3.3	84
28	Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 18-24.	2.4	30
29	Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation. Metals and Materials International, 2017, 23, 568-575.	1.8	4
30	Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1951-1961.	1.0	14
31	Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 187-196.	1.0	31
32	Development of Low-Fluoride Slag for Electroslag Remelting: Role of Li2O on the Viscosity and Structure of the Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3343-3349.	1.0	25
33	Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2211-2221.	1.0	17
34	Effects of Ce and P addition on as-cast structure and formation mechanism of cerium compounds in Ce-added TWIP steels. Materials Characterization, 2016, 120, 234-243.	1.9	8
35	Scattering Effect of Iron Metallic Particles on the Extinction Coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 Glasses. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2785-2792.	1.0	4
36	Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 627-636.	2.4	32

Јинд-*W*оок Сно

#	Article	IF	CITATIONS
37	Effect of Water Vapor on Evaporation and Melt Crystallization of Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 32-36.	1.0	9
38	In-depth study of mold heat transfer for the high speed continuous casting process. Metals and Materials International, 2016, 22, 295-304.	1.8	5
39	A Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 779-787.	1.0	1
40	Viscoelastic Properties of Calcium Silicate Based Mold Fluxes at 1623K. , 2016, , 447-453.		0
41	Controlling Heat Transfer through Mold Flux Film by Scattering Effects. , 2016, , 485-491.		Ο
42	Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K. Journal of Non-Crystalline Solids, 2015, 425, 83-90.	1.5	25
43	Assessment of heat transfer through mold slag film considering radiative absorption behavior of mold fluxes. Metals and Materials International, 2015, 21, 580-587.	1.8	14
44	Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2110-2120.	1.0	55
45	Controlling the shear thinning property of calcium silicate melts by addition of Si3N4. Journal of Non-Crystalline Solids, 2015, 423-424, 45-49.	1.5	15
46	Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses. Journal of Non-Crystalline Solids, 2015, 412, 58-65.	1.5	29
47	Structural investigations of CaO–CaF2–SiO2–Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels. Materials & Design, 2015, 76, 1-8.	5.1	12
48	Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2374-2383.	1.0	28
49	Crystallization Kinetics and Mechanism of CaO–Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 345-356.	1.0	32
50	Evolution of Non-Metallic Inclusions in Ultra Low Carbon Steel after Aluminum Deoxidization. ISIJ International, 2014, 54, 475-481.	0.6	15
51	Evaluation of Matusita Equation and Its Modified Expression for Determining Activation Energy Associated with Melt Crystallization. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1987-1991.	1.0	5
52	Shear Thinning Behavior of Calcium Silicateâ€Based Mold Fluxes at 1623ÂK. Journal of the American Ceramic Society, 2014, 97, 3263-3269.	1.9	49
53	Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1081-1097.	1.0	82
54	Crystallization Behaviors of CaO-SiO2-Al2O3-Na2O-CaF2-(Li2O-B2O3) Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1874-1886.	1.0	59

Јинд-*W*оок Сно

#	ARTICLE	IF	CITATIONS
55	The effect of chemical composition on grain structure and texture evolution of hot rough rolled carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 102-112.	2.6	2
56	The investigation of radiative heat transfer across molten mold flux film during the continuous casting of steels. WIT Transactions on Engineering Sciences, 2014, , .	0.0	0
57	A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 299-308.	1.0	93
58	A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 309-316.	1.0	81
59	Infiltration of Slag Film into the Grooves on a Continuous Casting Mold. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 146-153.	1.0	12
60	Assessment of CaO^ ^ndash;Al2O3 Based Mold Flux System for High Aluminum TRIP Casting. ISIJ International, 2013, 53, 62-70.	0.6	133
61	Molten Mold Flux Technology for Continuous Casting of the ULC and TWIP Steel. , 2013, , 735-745.		0
62	An Investigation of the Evaporation of B2O3 and Na2O in F-Free Mold Slags. ISIJ International, 2011, 51, 80-87.	0.6	43
63	Numerical modeling and analysis of the thermal behavior of copper molds in continuous casting. Metals and Materials International, 2010, 16, 281-288.	1.8	9
64	Crystallization Behaviors of Slags through a Heat Flux Simulator. ISIJ International, 2010, 50, 1142-1150.	0.6	75
65	Properties of F-free glass system as a mold flux: viscosity, thermal conductivity and crystallization behavior. Journal of Non-Crystalline Solids, 2004, 345-346, 157-160.	1.5	80
66	Phase-field modelling of the thermo-mechanical properties of carbon steels. Acta Materialia, 2002, 50, 2259-2268.	3.8	17
67	Effect of solidification of mold fluxes on the heat transfer in casting mold. Journal of Non-Crystalline Solids, 2001, 282, 110-117.	1.5	51
68	Thermal Resistance at the Interface between Mold Flux Film and Mold for Continuous Casting of Steels ISIJ International, 1998, 38, 440-446.	0.6	129
69	Heat Transfer across Mold Flux Film in Mold during Initial Solidification in Continuous Casting of Steel ISIJ International, 1998, 38, 834-842.	0.6	120
70	Radiative Heat Transfer through Mold Flux Film during Initial Solidification in Continuous Casting of Steel ISIJ International, 1998, 38, 268-275.	0.6	83
71	Successful Consolidation of Inoculant Alloy by Controlling Brazil Nut Effect and Capillary Force. Metals and Materials International, 0, , 1.	1.8	Ο