Srijit Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312699/publications.pdf

Version: 2024-02-01

393982 500791 1,371 28 19 28 citations h-index g-index papers 46 46 46 1400 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Iron(III)-Catalyzed Four-Component Coupling Reaction of 1,3-Dicarbonyl Compounds, Amines, Aldehydes, and Nitroalkanes: A Simple and Direct Synthesis of Functionalized Pyrroles. Journal of Organic Chemistry, 2010, 75, 1674-1683.	1.7	243
2	An FeCl3-catalyzed highly C3-selective Friedel–Crafts alkylation of indoles with alcohols. Tetrahedron Letters, 2007, 48, 7160-7163.	0.7	125
3	Iron-Catalyzed Synthesis of Functionalized 2 <i>H</i> -Chromenes via Intramolecular Alkyneâ^Carbonyl Metathesis. Journal of Organic Chemistry, 2011, 76, 3539-3544.	1.7	119
4	An efficient FeCl3-catalyzed amidation reaction of secondary benzylic and allylic alcohols with carboxamides or p-toluenesulfonamide. Tetrahedron Letters, 2008, 49, 858-862.	0.7	113
5	A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Letters, 2007, 48, 4065-4069.	0.7	110
6	An Efficient Ironâ€Catalyzed Carbon–Carbon Singleâ€Bond Cleavage via Retroâ€Claisen Condensation: A Mild and Convenient Approach to Synthesize a Variety of Esters or Ketones. European Journal of Organic Chemistry, 2010, 2010, 2861-2866.	1,2	73
7	Iron(III)â€Catalyzed Addition of Benzylic Alcohols to Aryl Alkynes – A New Synthesis of Substituted Aryl Ketones. European Journal of Organic Chemistry, 2008, 2008, 5798-5804.	1.2	69
8	Brønsted Acid-Catalyzed Intramolecular Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer. Journal of the American Chemical Society, 2015, 137, 4646-4649.	6.6	58
9	Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst. Nature Communications, 2019, 10, 3826.	5. 8	54
10	New and Efficient Iron Halide Mediated Synthesis of Alkenyl Halides through Coupling of Alkynes and Alcohols. European Journal of Organic Chemistry, 2009, 2009, 2354-2359.	1.2	48
11	The Efficiency of the Metal Catalysts in the Nucleophilic Substitution of Alcohols is Dependent on the Nucleophile and Not on the Electrophile. Chemistry - an Asian Journal, 2013, 8, 974-981.	1.7	46
12	A gold(i)-catalyzed route to \hat{i}_{\pm} -sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols. Chemical Communications, 2012, 48, 6586.	2.2	40
13	Nucleophilic <i>ipso</i> -Substitution of Aryl Methyl Ethers through Aryl C–OMe Bond Cleavage; Access to Functionalized Bisthiophenes. Journal of Organic Chemistry, 2017, 82, 3403-3410.	1.7	40
14	Atomâ€Efficient Gold(I)â€Chlorideâ€Catalyzed Synthesis of αâ€Sulfenylated Carbonyl Compounds from Propargylic Alcohols and Aryl Thiols: Substrate Scope and Experimental and Theoretical Mechanistic Investigation. Chemistry - A European Journal, 2013, 19, 17939-17950.	1.7	33
15	BrÃ, nsted Acid Catalyzed Functionalization of Aromatic Alcohols through Nucleophilic Substitution of Hydroxyl Group. Journal of Organic Chemistry, 2016, 81, 2355-2363.	1.7	27
16	Inexpensive and Efficient Synthesis of Propargylic Substituted Active Methylene Compounds Catalyzed by FeCl3. Synthetic Communications, 2010, 41, 243-254.	1.1	25
17	Tandem Pd/Au atalyzed Route to αâ€Sulfenylated Carbonyl Compounds from Terminal Propargylic Alcohols and Thiols. Chemistry - A European Journal, 2014, 20, 2159-2163.	1.7	25
18	H ₃ PO ₂ -Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles. ACS Catalysis, 2020, 10, 1344-1352.	5.5	23

#	Article	IF	Citations
19	One-Pot Synthesis of Keto Thioethers by Palladium/Gold-Catalyzed Click and Pinacol Reactions. Organic Letters, 2014, 16, 5556-5559.	2.4	21
20	Three-Component Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles Catalyzed by Iron(III) Chloride. Synthetic Communications, 2013, 43, 1563-1570.	1.1	19
21	An aqueous and recyclable copper(i)-catalyzed route to \hat{l}_{\pm} -sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols. Green Chemistry, 2013, 15, 3176.	4.6	14
22	Catalytic <i>O</i> ―to <i>N</i> â€Alkyl Migratory Rearrangement: Transition Metalâ€Free Direct and Tandem Routes to <i>N</i> â€Alkylated Pyridones and Benzothiazolones. Advanced Synthesis and Catalysis, 2018, 360, 3930-3939.	2.1	10
23	Regioselective Nâ€Functionalization of Tautomerizable Heterocycles through Methyl Trifluoromethanesulfonateâ€Catalyzed Substitution of Alcohols and Alkyl Group Migrations. Advanced Synthesis and Catalysis, 2022, 364, 865-872.	2.1	9
24	Iron(III)-Catalyzed Nucleophilic Substitution of the Hydroxy Group in Benzoin by Alcohols. Synthesis, 2012, 44, 1213-1218.	1.2	8
25	Holistic assessment of existing buildings: Indian context. Journal of Building Engineering, 2019, 25, 100793.	1.6	6
26	Potential activity of Linezolid against SARS-CoV-2 using electronic and molecular docking study. Journal of Molecular Modeling, 2021, 27, 222.	0.8	6
27	BrÃ,nsted Acid Mediated Nucleophilic Functionalization of Amides through Stable Amide Câ^'N Bond Cleavage; Oneâ€6tep Synthesis of 2â€6ubstituted Benzothiazoles. European Journal of Organic Chemistry, 2021, 2021, 3569-3572.	1.2	4
28	Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer. Synlett, 2016, 27, 173-176.	1.0	3