
ZilÃ; Luz Paulino SimÃues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312633/publications.pdf Version: 2024-02-01

ΖΗ Δ΄: Η ΗΖ ΡΑΤΗ ΙΝΟ SIMÃHES

#	Article	IF	CITATIONS
1	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
2	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
3	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	12.6	357
4	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330
5	Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Experimental Gerontology, 2004, 39, 767-773.	2.8	304
6	Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Letters, 2005, 579, 4961-4965.	2.8	293
7	Validation of reference genes for gene expression studies in the honey bee, <i>Apis mellifera</i> , by quantitative real-time RT-PCR. Apidologie, 2008, 39, 372-385.	2.0	292
8	A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 2014, 46, 1081-1088.	21.4	273
9	Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnology, 2003, 3, 1.	3.3	243
10	Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Developmental Biology, 2007, 7, 70.	2.1	226
11	The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochemistry and Molecular Biology, 2003, 33, 459-465.	2.7	167
12	Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. Journal of Insect Physiology, 2000, 46, 153-160.	2.0	160
13	Vitellogenin expression in queen ovaries and in larvae of both sexes ofApis mellifera. Archives of Insect Biochemistry and Physiology, 2005, 59, 211-218.	1.5	125
14	RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Die Naturwissenschaften, 2008, 95, 953-961.	1.6	125
15	Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera. Journal of Insect Science, 2002, 2, 1-8.	0.9	106
16	Identification of a juvenile hormone esterase-like gene in the honey bee, Apis mellifera L. — Expression analysis and functional assays. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 150, 33-44.	1.6	102
17	Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochemistry and Molecular Biology, 2010, 40, 241-251.	2.7	95
18	The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titres in Africanized <i>Apis mellifera</i> workers. Journal of Apicultural Research, 1996, 35, 27-36.	1.5	91

ZilÃi Luz Paulino Simões

#	Article	IF	CITATIONS
19	The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Molecular Biology, 2010, 11, 23.	3.0	89
20	Ecdysteroid titer and reproduction in queens and workers of the honey bee and of a stingless bee: loss of ecdysteroid function at increasing levels of sociality?. Insect Biochemistry and Molecular Biology, 2002, 32, 211-216.	2.7	88
21	Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays. Insects, 2013, 4, 90-103.	2.2	85
22	Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochemistry and Molecular Biology, 2004, 34, 1257-1268.	2.7	80
23	Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Molecular Biology, 2006, 15, 703-714.	2.0	73
24	Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers. Journal of Insect Physiology, 2008, 54, 1138-1147.	2.0	71
25	A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochemistry and Molecular Biology, 2009, 39, 157-160.	2.7	71
26	Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development. Journal of Insect Physiology, 2002, 48, 783-790.	2.0	68
27	Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochemistry and Molecular Biology, 2005, 35, 541-552.	2.7	68
28	Standard methods for physiology and biochemistry research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-48.	1.5	65
29	Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nature Communications, 2014, 5, 5529.	12.8	65
30	Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes. PLoS ONE, 2014, 9, e86923.	2.5	64
31	Higher vitellogenin concentrations in honey bee workers may be an adaptation to life in temperate climates. Insectes Sociaux, 2005, 52, 316-319.	1.2	62
32	Dietary dopamine causes ovary activation in queenless Apis mellifera workers. Apidologie, 2003, 34, 281-289.	2.0	60
33	Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochemistry and Molecular Biology, 2013, 43, 474-482.	2.7	55
34	The gene vitellogenin affects microRNA regulation in honey bee (Apis mellifera) fat body and brain. Journal of Experimental Biology, 2013, 216, 3724-32.	1.7	54
35	Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone. Insect Molecular Biology, 2004, 13, 459-467.	2.0	53
36	Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Brazilian Journal of Biology, 2002, 62, 689-699.	0.9	51

ZilÃi Luz Paulino Simões

#	Article	IF	CITATIONS
37	Molecular cloning and expression of a hexamerin cDNA from the honey bee, Apis mellifera. Journal of Insect Physiology, 2005, 51, 1135-1147.	2.0	51
38	Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Frontiers in Genetics, 2014, 5, 445.	2.3	49
39	Characterization and expression of theHex 110 gene encoding a glutamine-rich hexamerin in the honey bee,Apis mellifera. Archives of Insect Biochemistry and Physiology, 2006, 63, 57-72.	1.5	48
40	Tradeâ€off between immune stimulation and expression of storage protein genes. Archives of Insect Biochemistry and Physiology, 2009, 71, 70-87.	1.5	47
41	A Honey Bee Hexamerin, HEX 70a, Is Likely to Play an Intranuclear Role in Developing and Mature Ovarioles and Testioles. PLoS ONE, 2011, 6, e29006.	2.5	47
42	The juvenile hormone (JH) epoxide hydrolase gene in the honey bee (Apis mellifera) genome encodes a protein which has negligible participation in JH degradation. Journal of Insect Physiology, 2010, 56, 1139-1146.	2.0	45
43	Non-coding transcription characterization and annotation. RNA Biology, 2012, 9, 274-282.	3.1	45
44	Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genetics and Molecular Research, 2009, 8, 709-717.	0.2	45
45	Genomewide analysis of admixture and adaptation in the Africanized honeybee. Molecular Ecology, 2017, 26, 3603-3617.	3.9	44
46	Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage. PLoS ONE, 2016, 11, e0146447.	2.5	43
47	A honeybee storage protein gene, hex 70a, expressed in developing gonads and nutritionally regulated in adult fat body. Journal of Insect Physiology, 2008, 54, 867-877.	2.0	42
48	Honey bee (Apis mellifera) transferrin-gene structure and the role of ecdysteroids in the developmental regulation of its expression. Insect Biochemistry and Molecular Biology, 2004, 34, 415-424.	2.7	40
49	MicroRNA signatures characterizing casteâ€independent ovarian activity in queen and worker honeybees (<scp><i>A</i></scp> <i>pis mellifera</i> L.). Insect Molecular Biology, 2016, 25, 216-226.	2.0	39
50	Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Die Naturwissenschaften, 2014, 101, 17-24.	1.6	38
51	Protein profiles of testes, seminal vesicles and accessory glands of honey bee pupae and their relation to the ecdysteroid titer. Apidologie, 2007, 38, 1-11.	2.0	36
52	Downregulation of ultraspiracle gene expression delays pupal development in honeybees. Journal of Insect Physiology, 2008, 54, 1035-1040.	2.0	34
53	Ecdysteroid-Dependent Expression of the Tweedle and Peroxidase Genes during Adult Cuticle Formation in the Honey Bee, Apis mellifera. PLoS ONE, 2011, 6, e20513.	2.5	33
54	A cuticle protein gene in the honeybee: Expression during development and in relation to the ecdysteroid titer. Insect Biochemistry and Molecular Biology, 2007, 37, 1272-1282.	2.7	32

ZilÃi Luz Paulino Simões

#	Article	IF	CITATIONS
55	Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensinâ€1. Insect Molecular Biology, 2018, 27, 577-589.	2.0	31
56	A study of the constitutive heterochromatin and nucleolus organizer regions of Isocopris inhiata and Diabroctis mimas (Coleoptera: Scarabaeidae, Scarabaeinae) using C-banding, AgNO3 staining and FISH techniques. Genetics and Molecular Biology, 2005, 28, 111-116.	1.3	30
57	Nutritionally Driven Differential Gene Expression Leads to Heterochronic Brain Development in Honeybee Castes. PLoS ONE, 2013, 8, e64815.	2.5	29
58	Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Scientific Reports, 2019, 9, 17692.	3.3	26
59	Hormonal control and target genes of <i>ftzâ€f1 </i> expression in the honeybee <i>Apis mellifera</i> : a positive loop linking juvenile hormone, <i>ftzâ€f1</i> , and <i>vitellogenin</i> . Insect Molecular Biology, 2019, 28, 145-159.	2.0	26
60	Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insectes Sociaux, 2007, 54, 70-76.	1.2	24
61	Farnesoic acid Oâ€methyl transferase (FAMeT) isoforms: Conserved traits and gene expression patterns related to caste differentiation in the stingless bee, <i>Melipona scutellaris</i> . Archives of Insect Biochemistry and Physiology, 2008, 67, 97-106.	1.5	24
62	Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. Journal of Insect Physiology, 2017, 101, 185-194.	2.0	24
63	The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome. BMC Genomics, 2004, 5, 84.	2.8	21
64	MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Scientific Reports, 2017, 7, 40884.	3.3	21
65	Organization, evolution and transcriptional profile of hexamerin genes of the parasitic wasp <i>Nasonia vitripennis</i> (Hymenoptera: Pteromalidae). Insect Molecular Biology, 2010, 19, 137-146.	2.0	20
66	Immunosenescence in honey bees (Apis mellifera L.) is caused by intrinsic senescence and behavioral physiology. Experimental Gerontology, 2019, 119, 174-183.	2.8	20
67	Apoptosis Process in Mouse Leydig Cells during Postnatal Development. Microscopy and Microanalysis, 2003, 9, 68-73.	0.4	19
68	Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS ONE, 2019, 14, e0213796.	2.5	19
69	Hox Gene Expression Leads to Differential Hind Leg Development between Honeybee Castes. PLoS ONE, 2012, 7, e40111.	2.5	17
70	Comparative cytogenetics of three species of Dichotomius (Coleoptera, Scarabaeidae). Genetics and Molecular Biology, 2009, 32, 276-280.	1.3	15
71	Mars is close to venus – Female reproductive proteins are expressed in the fat body and reproductive tract of honey bee (Apis mellifera L.) drones. Journal of Insect Physiology, 2010, 56, 1638-1644.	2.0	15
72	The nuclear and mitochondrial genomes of Frieseomelitta varia – a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics, 2020, 21, 386.	2.8	15

#	Article	IF	CITATIONS
73	The stomatogastric nervous system of the honey bee (Apis mellifera) in a critical phase of caste development. , 1998, 236, 139-149.		14
74	Active genic machinery for epigenetic <scp>RNA</scp> modifications in bees. Insect Molecular Biology, 2021, 30, 566-579.	2.0	14
75	Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes. Journal of Insect Physiology, 2012, 58, 1217-1225.	2.0	13
76	<scp>miRNA</scp> â€34 and <scp>miRNA</scp> â€210 target hexamerin genes enhancing their differential expression during early brain development of honeybee (<scp><i>Apis mellifera</i></scp>) castes. Insect Molecular Biology, 2021, 30, 594-604.	2.0	13
77	Effect of proctolin on the egg-laying activity of <i>Apis mellifera</i> queens. Journal of Apicultural Research, 2003, 42, 35-38.	1.5	10
78	Hormone-dependent protein patterns in integument and cuticular pigmentation in Apis mellifera during pharate adult development. Journal of Insect Physiology, 2001, 47, 1275-1282.	2.0	9
79	Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. Journal of Insect Physiology, 2021, 131, 104237.	2.0	8
80	Occurrence of a prothoracicotropic hormone-like peptide in the developing nervous system of the honey bee (Apis mellifera L). Apidologie, 1997, 28, 399-409.	2.0	8
81	Ovos produzidos por rainhas e operárias de Scaptotrigona depilis (Hymenoptera, Apidae, Meliponina): morfometria e aspectos relacionados. Iheringia - Serie Zoologia, 2006, 96, 89-93.	0.5	7
82	Rapid method for DNA extraction from the honey bee Apis mellifera and the parasitic bee mite Varroa destructor using lysis buffer and proteinase K. Genetics and Molecular Research, 2013, 12, 4846-4854.	0.2	7
83	Casteâ€specific gene expression underlying the differential adult brain development in the honeybee <scp><i>Apis mellifera</i></scp> . Insect Molecular Biology, 2021, 30, 42-56.	2.0	7
84	Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics, 2021, 22, 756.	2.8	7
85	Mispatterning in the ommatidia ofApis melliferapupae treated with a juvenile hormone analogue. Journal of Morphology, 2001, 249, 89-99.	1.2	6
86	Microsatellite loci for the carpenter bee Xylocopa frontalis (Apidae, Xylocopini). Conservation Genetics Resources, 2012, 4, 315-317.	0.8	6
87	Reproductive capacity and castes in eusocial stingless bees (Hymenoptera: Apidae). Current Opinion in Insect Science, 2019, 31, 20-28.	4.4	6
88	Vitellogenin content in fat body and ovary homogenates of workers and queens of <i>Melipona quadrifasciata anthidioides</i> during vitellogenesis. Insect Science, 2012, 19, 213-219.	3.0	5
89	Molecular underpinnings of the early brain developmental response to differential feeding in the honey bee Apis mellifera. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194732.	1.9	5
90	<i>Ultraspiracle</i> of the stingless bees <i>Melipona scutellaris</i> and <i>Scaptotrigona depilis</i> cDNA sequence and expression profiles during pupal development. Apidologie, 2007, 38, 462-471.	2.0	4

ZilÃ; Luz Paulino Simões

#	Article	IF	CITATIONS
91	SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs. Genetics and Molecular Biology, 2020, 43, e20190300.	1.3	4
92	Higher fertility of queenless workers in the Africanized honey bee. Insectes Sociaux, 1998, 45, 473-476.	1.2	3
93	Effects of treatment of the fat body trophocytes of <i>Melipona quadrifasciata anthidioides</i> nurse workers and virgin queens in culture by juvenile hormone III and ecdysterone (20â€HE). Microscopy Research and Technique, 2013, 76, 20-27.	2.2	3
94	Circadian clock genes are differentially modulated during the daily cycles and chronological age in the social honeybee (Apis mellifera). Apidologie, 2018, 49, 71-83.	2.0	3
95	Vitellogenin of the solitary bees Centris tarsata and Centris analis (Hymenoptera: Apidae): cDNA structural analysis and gene expression. Apidologie, 2021, 52, 292-307.	2.0	3
96	In vitro secretion of ecdysteroid-dependent proteins and of a 70 kDa subunit reactive to anti-prophenoloxidase serum by Apis mellifera integument. Apidologie, 2003, 34, 377-388.	2.0	3
97	Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. Insect Biochemistry and Molecular Biology, 2022, 146, 103774.	2.7	3
98	07-P001 Differential hind leg development in Apis mellifera castes. Mechanisms of Development, 2009, 126, S137.	1.7	1
99	Recombination mapping of the Brazilian stingless bee Frieseomelitta varia confirms high recombination rates in social hymenoptera. BMC Genomics, 2021, 22, 673.	2.8	1
100	07-P011 Differential expression of cuticle protein genes during metamorphosis of the honeybee, Apis mellifera. Mechanisms of Development, 2009, 126, S139-S140.	1.7	0