Rebecca A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312474/publications.pdf

Version: 2024-02-01

20 papers

1,189 citations

687220 13 h-index 19 g-index

24 all docs

24 docs citations

times ranked

24

1632 citing authors

#	Article	IF	CITATIONS
1	Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem. Plant Physiology, 2014, 166, 798-807.	2.3	203
2	Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 2013, 64, 11-31.	2.4	197
3	Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2016, 2, e1600393.	4.7	147
4	Neighboring Parenchyma Cells Contribute to <i>Arabidopsis</i> Xylem Lignification, while Lignification of Interfascicular Fibers Is Cell Autonomous. Plant Cell, 2013, 25, 3988-3999.	3.1	138
5	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016.	2.3	84
6	The transport of monomers during lignification in plants: anything goes but how?. Current Opinion in Biotechnology, 2019, 56, 69-74.	3.3	66
7	Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams. ChemSusChem, 2020, 13, 2012-2024.	3.6	54
8	Engineering monolignol p-coumarate conjugates into Poplar and Arabidopsis lignins. Plant Physiology, 2015, 169, pp.00815.2015.	2.3	47
9	Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems. Plant Physiology, 2017, 174, 1028-1036.	2.3	45
10	Monolignol Benzoates Incorporate into the Lignin of Transgenic <i>Populus trichocarpa</i> Depleted in C3H and C4H. ACS Sustainable Chemistry and Engineering, 2020, 8, 3644-3654.	3.2	39
11	Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> Plant Physiology, 2017, 175, 1058-1067.	2.3	34
12	Knockout of the lignin pathway gene <scp><i>BnF5H</i></scp> decreases the S/G lignin compositional ratio and improves <i>Sclerotinia sclerotiorum</i> resistance in <i>Brassica napus</i> Plant, Cell and Environment, 2022, 45, 248-261.	2.8	33
13	Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins. Biotechnology for Biofuels, 2017, 10, 109.	6.2	32
14	<i>p</i> HBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology, 2022, 188, 1014-1027.	2.3	18
15	Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines. Frontiers in Plant Science, 2016, 7, 708.	1.7	13
16	Eudicot Nutshells: Cell-Wall Composition and Biofuel Feedstock Potential. Energy & Euglis, 2020, 34, 16274-16283.	2.5	12
17	Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 2022, 63, 744-754.	1.5	12
18	Identification and characterization of a set of monocot BAHD monolignol transferases. Plant Physiology, 2022, 189, 37-48.	2.3	10

#	Article	lF	CITATIONS
19	Stacking AsFMT overexpression with BdPMT loss of function enhances monolignol ferulate production in BrachypodiumÂdistachyon. Plant Biotechnology Journal, 2021, 19, 1878-1886.	4.1	5
20	Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams. ChemSusChem, 2020, 13, 1922-1922.	3.6	0