
P Jeffrey Conn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of chiral 6-azaspiro[2.5]octanes as potent and selective antagonists of the M4 muscarinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters, 2022, 56, 128479.	2.2	1
2	Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons. Neuron, 2022, 110, 1068-1083.e5.	8.1	36
3	Prefrontal cortex parvalbumin interneurons exhibit decreased excitability and potentiated synaptic strength after ethanol reward learning. Alcohol, 2022, 101, 17-26.	1.7	6
4	Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Molecular Pharmacology, 2022, 101, 275-285.	2.3	36
5	Development of VU6019650 : A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M ₅ Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. Journal of Medicinal Chemistry, 2022, 65, 6273-6286.	6.4	8
6	Selective mGlu ₁ Potentiation Reverses Cortical Disinhibition and Schizophreniaâ€like Social and Cognitive Deficits. FASEB Journal, 2022, 36, .	0.5	0
7	mGlu1-mediated restoration of prefrontal cortex inhibitory signaling reverses social and cognitive deficits in an NMDA hypofunction model in mice. Neuropsychopharmacology, 2022, 47, 1826-1835.	5.4	4
8	Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacological Reviews, 2022, 74, 630-661.	16.0	9
9	Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 4: SAR reveals positive cooperativity across multiple mGlu receptor subtypes leading to subtype unselective PAMs. Bioorganic and Medicinal Chemistry Letters, 2021, 32, 127724.	2.2	2
10	Increased Synaptic Strength and mGlu _{2/3} Receptor Plasticity on Mouse Prefrontal Cortex Intratelencephalic Pyramidal Cells Following Intermittent Access to Ethanol. Alcoholism: Clinical and Experimental Research, 2021, 45, 518-529.	2.4	15
11	Discovery and optimization of a novel CNS penetrant series of mGlu4 PAMs based on a 1,4-thiazepane core with in vivo efficacy in a preclinical Parkinsonian model. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127838.	2.2	3
12	Input-specific regulation of glutamatergic synaptic transmission in the medial prefrontal cortex by mGlu ₂ /mGlu ₄ receptor heterodimers. Science Signaling, 2021, 14, .	3.6	14
13	Profiling beneficial and potential adverse effects of MeCP2 overexpression in a hypomorphic Rett syndrome mouse model. Genes, Brain and Behavior, 2021, , 12752.	2.2	10
14	Targeting muscarinic receptors to treat schizophrenia. Behavioural Brain Research, 2021, 405, 113201.	2.2	37
15	Frontal cortex genetic ablation of metabotropic glutamate receptor subtype 3 (mGlu3) impairs postsynaptic plasticity and modulates affective behaviors. Neuropsychopharmacology, 2021, 46, 2148-2157.	5.4	8
16	Modeling Intrahippocampal Effects of Anterior Hippocampal Hyperactivity Relevant to Schizophrenia Using Chemogenetic Excitation of Long Axis–Projecting Mossy Cells in the Mouse Dentate Gyrus. Biological Psychiatry Global Open Science, 2021, 1, 101-111.	2.2	9
17	Discovery of the First Selective M ₄ Muscarinic Acetylcholine Receptor Antagonists with <i>in Vivo</i> Antiparkinsonian and Antidystonic Efficacy. ACS Pharmacology and Translational Science, 2021, 4, 1306-1321.	4.9	11
18	Discovery of VU6028418: A Highly Selective and Orally Bioavailable M4 Muscarinic Acetylcholine Receptor Antagonist. ACS Medicinal Chemistry Letters, 2021, 12, 1342-1349.	2.8	6

#	Article	IF	CITATIONS
19	Metabotropic glutamate receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
20	Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders. Neuropharmacology, 2021, 196, 108687.	4.1	33
21	Activating mGlu3 Metabotropic Glutamate Receptors Rescues Schizophrenia-like Cognitive Deficits Through Metaplastic Adaptations Within the Hippocampus. Biological Psychiatry, 2021, 90, 385-398.	1.3	27
22	Discovery of a novel class of heteroaryl-pyrrolidinones as positive allosteric modulators of the muscarinic acetylcholine receptor M1. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128193.	2.2	2
23	Positive allosteric modulators (PAMs) of the group II metabotropic glutamate receptors: Design, synthesis, and evaluation as ex-vivo tool compounds. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128342.	2.2	2
24	A GRM7 mutation associated with developmental delay reduces mGlu7 expression and produces neurological phenotypes. JCI Insight, 2021, 6, .	5.0	10
25	Receptors Glutamate Receptors, Metabotropic. , 2021, , 151-154.		0
26	Development of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes - Part 2. Bioorganic and Medicinal Chemistry Letters, 2021, 53, 128416.	2.2	0
27	mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Reports, 2021, 37, 109950.	6.4	21
28	Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Molecular Psychiatry, 2020, 25, 2786-2799.	7.9	28
29	Discovery of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126811.	2.2	3
30	Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M4 positive allosteric modulator (PAM) chemotype. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126812.	2.2	2
31	mGlu2 and mGlu3 Negative Allosteric Modulators Divergently Enhance Thalamocortical Transmission and Exert Rapid Antidepressant-like Effects. Neuron, 2020, 105, 46-59.e3.	8.1	56
32	Synthesis and SAR of a series of mGlu7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127529.	2.2	5
33	Contrasting sex-dependent adaptations to synaptic physiology and membrane properties of prefrontal cortex interneuron subtypes in a mouse model of binge drinking. Neuropharmacology, 2020, 178, 108126.	4.1	32
34	Modulation of arousal and sleep/wake architecture by M1 PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology, 2020, 45, 2219-2228.	5.4	13
35	Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu ₇ Positive Allosteric Modulator Tool Compound. ACS Medicinal Chemistry Letters, 2020, 11, 1773-1779.	2.8	8
36	Phenotypic profiling of <scp>mGlu₇</scp> knockout mice reveals new implications for neurodevelopmental disorders. Genes, Brain and Behavior, 2020, 19, e12654.	2.2	25

#	Article	IF	CITATIONS
37	Leveraging bias to your advantage. Nature Chemical Biology, 2020, 16, 226-227.	8.0	1
38	Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology, 2020, 171, 108089.	4.1	15
39	Synthesis and pharmacological evaluation of bivalent tethered ligands to target the mGlu2/4 heterodimeric receptor results in a compound with mGlu2/2 homodimer selectivity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127212.	2.2	3
40	Discovery of Tricyclic Triazolo- and Imidazopyridine Lactams as M ₁ Positive Allosteric Modulators. ACS Chemical Neuroscience, 2019, 10, 1035-1042.	3.5	5
41	Evaluation of Synthetic Cytochrome P ₄₅₀ -Mimetic Metalloporphyrins To Facilitate "Biomimetic―Biotransformation of a Series of mGlu ₅ Allosteric Ligands. ACS Omega, 2019, 4, 12782-12789.	3.5	2
42	Further exploration of an N-aryl phenoxyethoxy pyridinone-based series of mGlu3 NAMs: Challenging SAR, enantiospecific activity and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2670-2674.	2.2	0
43	3293 Region Specific Dysregulation of Dopaminergic Signaling in Mice Displaying Excessive Over-Grooming. Journal of Clinical and Translational Science, 2019, 3, 19-20.	0.6	0
44	Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends in Pharmacological Sciences, 2019, 40, 1006-1020.	8.7	77
45	Discovery of a novel 3,4-dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126678.	2.2	7
46	Antidepressant potential of metabotropic glutamate receptor mGlu2 and mGlu3 negative allosteric modulators. Neuropsychopharmacology, 2019, 44, 214-236.	5.4	15
47	Roles of the M ₄ acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Movement Disorders, 2019, 34, 1089-1099.	3.9	32
48	SAR inspired by aldehyde oxidase (AO) metabolism: Discovery of novel, CNS penetrant tricyclic M4 PAMs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2224-2228.	2.2	4
49	Identification of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Acting at Site Distinct from 2-Methyl-6-(phenylethynyl)-pyridine Binding. ACS Chemical Neuroscience, 2019, 10, 3427-3436.	3.5	5
50	mGlu ₅ Positive Allosteric Modulators Facilitate Long-Term Potentiation via Disinhibition Mediated by mGlu ₅ -Endocannabinoid Signaling. ACS Pharmacology and Translational Science, 2019, 2, 198-209.	4.9	19
51	VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1714-1718.	2.2	6
52	M1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biological Psychiatry, 2019, 85, 989-1000.	1.3	25
53	Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1211-1214.	2.2	14
54	Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chemical Neuroscience, 2019, 10, 2125-2143.	3.5	21

#	Article	IF	CITATIONS
55	Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology, 2019, 149, 83-96.	4.1	17
56	Neuropharmacological Insight from Allosteric Modulation of mGlu Receptors. Trends in Pharmacological Sciences, 2019, 40, 240-252.	8.7	32
57	<i>In Vitro</i> to <i>in Vivo</i> Translation of Allosteric Modulator Concentration-Effect Relationships: Implications for Drug Discovery. ACS Pharmacology and Translational Science, 2019, 2, 442-452.	4.9	7
58	Biased M ₁ receptor–positive allosteric modulators reveal role of phospholipase D in M ₁ -dependent rodent cortical plasticity. Science Signaling, 2019, 12, .	3.6	9
59	Novel M4 positive allosteric modulators derived from questioning the role and impact of a presumed intramolecular hydrogen-bonding motif in β-amino carboxamide-harboring ligands. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 362-366.	2.2	4
60	Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 47-50.	2.2	5
61	Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu ₇ Negative Allosteric Modulator (NAM) in Vivo Tool Compound: <i>N</i> -(2-(1 <i>H</i> -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamic (VU6012962). Journal of Medicinal Chemistry. 2019. 62. 1690-1695.	de ^{6.4}	20
62	Pick Your Model Wisely: Understanding the Negative Symptoms of Schizophrenia in Rodent Models. ACS Chemical Neuroscience, 2019, 10, 33-35.	3.5	1
63	Discovery of Novel Central Nervous System Penetrant Metabotropic Glutamate Receptor Subtype 2 (mGlu ₂) Negative Allosteric Modulators (NAMs) Based on Functionalized Pyrazolo[1,5- <i>a</i>]pyrimidine-5-carboxamide and Thieno[3,2- <i>b</i>]pyridine-5-carboxamide Cores. lournal of Medicinal Chemistry. 2019. 62. 378-384.	6.4	17
64	The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 342-346.	2.2	6
65	Discovery of VU2957 (Valiglurax): An mGlu4 Positive Allosteric Modulator Evaluated as a Preclinical Candidate for the Treatment of Parkinson's Disease. ACS Medicinal Chemistry Letters, 2019, 10, 255-260.	2.8	17
66	Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress. Neuropharmacology, 2019, 144, 19-28.	4.1	43
67	Discovery, Structure–Activity Relationship, and Biological Characterization of a Novel Series of 6-((1 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridin-3-yl)amino)-benzo[<i>d</i>]isothiazole-3-carboxamides as Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 4 (mGlu ₄). lournal of Medicinal Chemistry, 2019, 62, 342-358.	6.4	16
68	Metabotropic glutamate receptor subtype 3 gates acute stress-induced dysregulation of amygdalo-cortical function. Molecular Psychiatry, 2019, 24, 916-927.	7.9	41
69	Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
70	The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Current Opinion in Pharmacology, 2018, 38, 31-36.	3.5	56
71	Discovery and Optimization of Potent and CNS Penetrant M ₅ -Preferring Positive Allosteric Modulators Derived from a Novel, Chiral <i>N</i> -(Indanyl)piperidine Amide Scaffold. ACS Chemical Neuroscience, 2018, 9, 1572-1581.	3.5	13
72	Discovery of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1679-1685.	2.2	2

#	Article	IF	CITATIONS
73	Structure–Activity Relationships of Pan-Gα _{q/11} Coupled Muscarinic Acetylcholine Receptor Positive Allosteric Modulators. ACS Chemical Neuroscience, 2018, 9, 1818-1828.	3.5	7
74	PF-06827443 Displays Robust Allosteric Agonist and Positive Allosteric Modulator Activity in High Receptor Reserve and Native Systems. ACS Chemical Neuroscience, 2018, 9, 2218-2224.	3.5	19
75	Genetic Reduction or Negative Modulation of mGlu ₇ Does Not Impact Anxiety and Fear Learning Phenotypes in a Mouse Model of <i>MECP2</i> Duplication Syndrome. ACS Chemical Neuroscience, 2018, 9, 2210-2217.	3.5	9
76	Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cerebral Cortex, 2018, 28, 4291-4304.	2.9	17
77	A Novel M ₁ PAM VU0486846 Exerts Efficacy in Cognition Models without Displaying Agonist Activity or Cholinergic Toxicity. ACS Chemical Neuroscience, 2018, 9, 2274-2285.	3.5	43
78	mGlu1 and mGlu5 modulate distinct excitatory inputs to the nucleus accumbens shell. Neuropsychopharmacology, 2018, 43, 2075-2082.	5.4	27
79	M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology, 2018, 43, 1763-1771.	5.4	56
80	Differential Pharmacology and Binding of mGlu ₂ Receptor Allosteric Modulators. Molecular Pharmacology, 2018, 93, 526-540.	2.3	27
81	Total RNA Sequencing of Rett Syndrome Autopsy Samples Identifies the M ₄ Muscarinic Receptor as a Novel Therapeutic Target. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 291-300.	2.5	29
82	Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154. Neuropharmacology, 2018, 128, 492-502.	4.1	35
83	Positive allosteric modulation of M 1 and M 4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology, 2018, 136, 438-448.	4.1	43
84	Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313.	4.1	79
85	T39. NEURAL MECHANISMS OF METABOTROPIC GLUTAMATE RECEPTOR 3 MEDIATED ENHANCEMENT OF SYNAPTIC PLASTICITY AND COGNITION. Schizophrenia Bulletin, 2018, 44, S127-S128.	4.3	1
86	43.1 GENETIC INSIGHTS LEAD TO DISCOVERY OF SELECTIVE ACTIVATORS OF MGLU1 AND MGLU3 METABOTROPIC GLUTAMATE RECEPTORS AS POTENTIAL TREATMENTS FOR SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S70-S70.	4.3	0
87	T227. THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 REGULATES STRIATAL DOPAMINE RELEASE VIA AN ENDOCANNABINOID-DEPENDENT MECHANISM: IMPLICATIONS FOR THE TREATMENT OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S204-S205.	4.3	1
88	VU6007477, a Novel M1 PAM Based on a Pyrrolo[2,3-b]pyridine Carboxamide Core Devoid of Cholinergic Adverse Events. ACS Medicinal Chemistry Letters, 2018, 9, 917-922.	2.8	11
89	Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochemical Pharmacology, 2018, 154, 243-254.	4.4	19
90	Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chemical Neuroscience, 2018, 9, 2188-2204.	3.5	30

#	Article	IF	CITATIONS
91	Discovery and characterization of N-(1,3-dialkyl-1H-indazol-6-yl)-1H-pyrazolo[4,3-b]pyridin-3-amine scaffold as mGlu4 positive allosteric modulators that mitigate CYP1A2 induction liability. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2641-2646.	2.2	9
92	Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington's disease. Neuropsychopharmacology, 2018, 43, 2056-2063.	5.4	25
93	43. BUILDING ON GENETICS AND PATHOPHYSIOLOGY OF SCHIZOPHRENIA TO GUIDE DISCOVERY OF NEW TREATMENTS. Schizophrenia Bulletin, 2018, 44, S70-S70.	4.3	0
94	Mutual activation of glutamatergic mGlu4 and muscarinic M4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacology, 2018, 235, 2897-2913.	3.1	20
95	The discovery of VU0486846: steep SAR from a series of M1 PAMs based on a novel benzomorpholine core. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2175-2179.	2.2	10
96	Disease-Modifying Effects of M ₁ Muscarinic Acetylcholine Receptor Activation in an Alzheimer's Disease Mouse Model. ACS Chemical Neuroscience, 2017, 8, 1177-1187.	3.5	36
97	Continued optimization of the M 5 NAM ML375: Discovery of VU6008667, an M 5 NAM with high CNS penetration and a desired short half-life in rat for addiction studies. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1356-1359.	2.2	23
98	Optimization of M 4 positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2296-2301.	2.2	17
99	Synthesis and evaluation of 4,6-disubstituted pyrimidines as CNS penetrant pan -muscarinic antagonists with a novel chemotype. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2479-2483.	2.2	2
100	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2990-2995.	2.2	16
101	Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron, 2017, 94, 431-446.	8.1	188
102	Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Molecular Brain, 2017, 10, 15.	2.6	113
103	novel, CNS penetrant pan-muscarinic antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3576-3581.	2.2	10
104	Muscarinic receptor M 4 positive allosteric modulators attenuate central effects of cocaine. Drug and Alcohol Dependence, 2017, 176, 154-161.	3.2	19
105	M 1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology, 2017, 118, 209-222.	4.1	32
106	Diverse Effects on M ₁ Signaling and Adverse Effect Liability within a Series of M ₁ Ago-PAMs. ACS Chemical Neuroscience, 2017, 8, 866-883.	3.5	44
107	Discovery of VU0467485/AZ13713945: An M ₄ PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2017, 8, 233-238.	2.8	43
108	Challenges in the development of an M 4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 171-175.	2.2	32

#	Article	IF	CITATIONS
109	Discovery of a novel 2,4-dimethylquinoline-6-carboxamide M 4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4999-5001.	2.2	15
110	Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu ₅ -Negative Allosteric Modulator VU0424238 (Auglurant). Drug Metabolism and Disposition, 2017, 45, 1245-1259.	3.3	22
111	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5179-5184.	2.2	17
112	Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4274-4279.	2.2	8
113	Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4858-4866.	2.2	8
114	Discovery of VU6005649, a CNS Penetrant mGlu _{7/8} Receptor PAM Derived from a Series of Pyrazolo[1,5- <i>a</i>]pyrimidines. ACS Medicinal Chemistry Letters, 2017, 8, 1110-1115.	2.8	28
115	Design and Synthesis of <i>N</i> -Aryl Phenoxyethoxy Pyridinones as Highly Selective and CNS Penetrant mGlu ₃ NAMs. ACS Medicinal Chemistry Letters, 2017, 8, 925-930.	2.8	38
116	mGlu ₇ potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Science Translational Medicine, 2017, 9, .	12.4	55
117	Design and Synthesis of mGlu ₂ NAMs with Improved Potency and CNS Penetration Based on a Truncated Picolinamide Core. ACS Medicinal Chemistry Letters, 2017, 8, 919-924.	2.8	33
118	VU6010608, a Novel mGlu ₇ NAM from a Series of <i>N</i> -(2-(1 <i>H</i> -1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Medicinal Chemistry Letters, 2017, 8, 1326-1330.	2.8	18
119	Role of mGlu ₅ Receptors and Inhibitory Neurotransmission in M ₁ Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. ACS Chemical Neuroscience, 2017, 8, 2254-2265.	3.5	21
120	Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation. Neuropsychopharmacology, 2017, 42, 2553-2566.	5.4	15
121	Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology, 2017, 115, 60-72.	4.1	43
122	Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M4 Muscarinic Receptor. Neuron, 2017, 96, 1358-1372.e4.	8.1	43
123	O1â€04â€05: Selective Potentiation Of Muscarinic Acetylcholine Receptor Subtype 1 Demonstrates Efficacy And Safety In Preclinical Models Of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P181.	0.8	0
124	Discovery of 3-aminopicolinamides as metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulator warheads engendering CNS exposure and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2915-2919.	2.2	3
125	Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3822-3825.	2.2	11
126	Discovery, Synthesis, and Preclinical Characterization ofN-(3-Chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu4). ACS Chemical Neuroscience, 2016, 7, 1192-1200.	3.5	39

#	Article	IF	CITATIONS
127	Re-exploration of the mGlu1 PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2289-2292.	2.2	7
128	Discovery and optimization of a novel series of highly CNS penetrant M 4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3- d]pyrimidine core. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3029-3033.	2.2	22
129	Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chemical Biology, 2016, 11, 1870-1879.	3.4	26
130	Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4282-4286.	2.2	11
131	Ligand-based virtual screen for the discovery of novel M5 inhibitor chemotypes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4487-4491.	2.2	15
132	Antipsychotic-like Effects of M 4 Positive Allosteric Modulators Are Mediated by CB 2 Receptor-Dependent Inhibition of Dopamine Release. Neuron, 2016, 91, 1244-1252.	8.1	110
133	Prefrontal Cortex-Mediated Impairments in a Genetic Model of NMDA Receptor Hypofunction Are Reversed by the Novel M ₁ PAM VU6004256. ACS Chemical Neuroscience, 2016, 7, 1706-1716.	3.5	39
134	Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu _{2/4} Heteromers. ACS Chemical Neuroscience, 2016, 7, 1201-1211.	3.5	50
135	Increased Metabotropic Glutamate Receptor 5 Signaling Underlies Obsessive-Compulsive Disorder-like Behavioral and Striatal Circuit Abnormalities in Mice. Biological Psychiatry, 2016, 80, 522-533.	1.3	63
136	Discovery and characterization of a novel series of N -phenylsulfonyl-1 H -pyrrole picolinamides as positive allosteric modulators of the metabotropic glutamate receptor 4 (mGlu 4). Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2984-2987.	2.2	5
137	Pharmacological Treatments for Autism Spectrum Disorder: Will Emerging Approaches Yield New Treatments?. Neuropsychopharmacology, 2016, 41, 376-377.	5.4	1
138	Changes in BQCA Allosteric Modulation of [3H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations. Neuropsychopharmacology, 2016, 41, 1620-1628.	5.4	26
139	N-Alkylpyrido[1′,2′:1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1894-1900.	2.2	9
140	Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1869-1872.	2.2	10
141	Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical Reviews, 2016, 116, 6707-6741.	47.7	151
142	Lead optimization of the VU0486321 series of mGlu 1 PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 751-756.	2.2	15
143	The Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator ADX88178 Inhibits Inflammatory Responses in Primary Microglia. Journal of NeuroImmune Pharmacology, 2016, 11, 231-237.	4.1	32
144	mGlu ₅ positive allosteric modulation normalizes synaptic plasticity defects and motor phenotypes in a mouse model of Rett syndrome. Human Molecular Genetics, 2016, 25, 1990-2004.	2.9	48

#	Article	IF	CITATIONS
145	Novel PAMs Targeting NMDAR CluN2A Subunit. Neuron, 2016, 89, 884-886.	8.1	6
146	Neurobiological Insights from mGlu Receptor Allosteric Modulation. International Journal of Neuropsychopharmacology, 2016, 19, pyv133.	2.1	10
147	An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia. Neuropsychopharmacology, 2016, 41, 2052-2061.	5.4	60
148	Preliminary investigation of 6,7-dihydropyrazolo[1,5- a]pyrazin-4-one derivatives as a novel series of mGlu 5 receptor positive allosteric modulators with efficacy in preclinical models of schizophrenia. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 429-434.	2.2	7
149	State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154 – Relation to antipsychotic-like drug effects. Neuropharmacology, 2016, 102, 244-253.	4.1	23
150	Partial mGlu5 Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology, 2016, 41, 1166-1178.	5.4	33
151	The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Current Neuropharmacology, 2016, 14, 455-473.	2.9	10
152	M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product. Scientific Reports, 2015, 5, 17555.	3.3	10
153	The First 50 Years of Molecular Pharmacology. Molecular Pharmacology, 2015, 88, 139-140.	2.3	4
154	Discovery of VU0409551/JNJ-46778212: An mGlu ₅ Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Medicinal Chemistry Letters, 2015, 6, 716-720.	2.8	41
155	Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell, 2015, 161, 1252-1265.	28.9	135
156	A Screen of Approved Drugs Identifies the Androgen Receptor Antagonist Flutamide and Its Pharmacologically Active Metabolite 2-Hydroxy-Flutamide as Heterotropic Activators of Cytochrome P450 3A In Vitro and In Vivo. Drug Metabolism and Disposition, 2015, 43, 1718-1726.	3.3	9
157	VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 123-136.	2.5	41
158	Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14078-14083.	7.1	41
159	Discovery and SAR of novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1310-1317.	2.2	9
160	Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1196-1201.	7.1	86
161	Further optimization of the M5 NAM MLPCN probe ML375: Tactics and challenges. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 690-694.	2.2	20
162	Relationship between In Vivo Receptor Occupancy and Efficacy of Metabotropic Glutamate Receptor Subtype 5 Allosteric Modulators with Different In Vitro Binding Profiles. Neuropsychopharmacology, 2015, 40, 755-765.	5.4	40

#	Article	IF	CITATIONS
163	The hippocampo-prefrontal pathway: a possible therapeutic target for negative and cognitive symptoms of schizophrenia. Future Neurology, 2015, 10, 115-128.	0.5	31
164	Further optimization of the mGlu5 PAM clinical candidate VU0409551/JNJ-46778212: Progress and challenges towards a back-up compound. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3515-3519.	2.2	7
165	Effects of VU0410120, a novel GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in a mouse model of autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 61, 10-17.	4.8	18
166	Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. Journal of Neuroscience, 2015, 35, 7600-7615.	3.6	40
167	Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and I-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology, 2015, 95, 121-129.	4.1	46
168	Biased mGlu 5 -Positive Allosteric Modulators Provide InÂVivo Efficacy without Potentiating mGlu 5 Modulation of NMDAR Currents. Neuron, 2015, 86, 1029-1040.	8.1	121
169	Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation. Molecular Pharmacology, 2015, 88, 188-202.	2.3	46
170	Tackling reproducibility in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 733-734.	46.4	62
171	Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2. Journal of Medicinal Chemistry, 2015, 58, 9027-9040.	6.4	31
172	Application of Parallel Multiparametric Cell-Based FLIPR Detection Assays for the Identification of Modulators of the Muscarinic Acetylcholine Receptor 4 (M4). Journal of Biomolecular Screening, 2015, 20, 858-868.	2.6	25
173	Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu ₁), Based on an <i>N</i> (i>-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu ₁ Receptors Found in Schizophrenics. Journal of	6.4	17
174	Acyl dihydropyrazolo[1,5-a]pyrimidinones as metabotropic glutamate receptor 5 positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5115-5120.	2.2	5
175	Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. Journal of Medicinal Chemistry, 2015, 58, 7485-7500.	6.4	62
176	Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 1: SAR of modifications to the central aryl core. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5107-5110.	2.2	12
177	M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron, 2015, 88, 762-773.	8.1	183
178	Discovery and SAR of muscarinic receptor subtype 1 (M1) allosteric activators from a molecular libraries high throughput screen. Part 1: 2,5-Dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-ones as positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 384-388.	2.2	9
179	Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics. Current Opinion in Pharmacology, 2015, 20, 40-45.	3.5	34
180	Selective Antagonism of mGlu5 Alters Sleepâ€wake and Spectral EEG and Ameliorates Behavioral Abnormalities in a Rodent Model of Traumatic Stress. FASEB Journal, 2015, 29, 615.8.	0.5	1

#	Article	IF	CITATIONS
181	M ₅ Receptor Activation Produces Opposing Physiological Outcomes in Dopamine Neurons Depending on the Receptor's Location. Journal of Neuroscience, 2014, 34, 3253-3262.	3.6	64
182	Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M ₁ muscarinic receptors. Movement Disorders, 2014, 29, 1655-1665.	3.9	152
183	Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain Injury. Neurotherapeutics, 2014, 11, 857-869.	4.4	70
184	Identification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7. ACS Chemical Neuroscience, 2014, 5, 1221-1237.	3.5	53
185	Modulation of neuronal microcircuit activities within the medial prefrontal cortex by mGluR5 positive allosteric modulator. Journal of Psychopharmacology, 2014, 28, 935-946.	4.0	8
186	Selective Actions of Novel Allosteric Modulators Reveal Functional Heteromers of Metabotropic Glutamate Receptors in the CNS. Journal of Neuroscience, 2014, 34, 79-94.	3.6	107
187	Extracellular Calcium Modulates Actions of Orthosteric and Allosteric Ligands on Metabotropic Glutamate Receptor 1α. Journal of Biological Chemistry, 2014, 289, 1649-1661.	3.4	22
188	Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. Neuropsychiatric Disease and Treatment, 2014, 10, 183.	2.2	76
189	Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiology of Disease, 2014, 61, 55-71.	4.4	193
190	Discovery and SAR of a novel series of metabotropic glutamate receptor 5 positive allosteric modulators with high ligand efficiency. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3641-3646.	2.2	7
191	Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator. Science, 2014, 344, 58-64.	12.6	476
192	Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 2: Development of a [3.3.0]-based series and other piperidine bioisosteres. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1062-1066.	2.2	6
193	Synthesis and SAR of substituted pyrazolo[1,5-a]quinazolines as dual mGlu2/mGlu3 NAMs. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2693-2698.	2.2	24
194	Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 1: Development of a potent and CNS penetrant [3.1.0]-based lead. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1067-1070.	2.2	8
195	Discovery, Synthesis and Characterization of a Highly Muscarinic Acetylcholine Receptor (mAChR)â€Selective M ₅ â€Orthosteric Antagonist, VU0488130 (ML381): A Novel Molecular Probe. ChemMedChem, 2014, 9, 1677-1682.	3.2	25
196	Chemical Modulation of Mutant mGlu ₁ Receptors Derived from Deleterious <i>GRM1</i> Mutations Found in Schizophrenics. ACS Chemical Biology, 2014, 9, 2334-2346.	3.4	46
197	Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nature Reviews Drug Discovery, 2014, 13, 692-708.	46.4	226
198	Antipsychotic Drug-Like Effects of the Selective M4 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator VU0152100. Neuropsychopharmacology, 2014, 39, 1578-1593.	5.4	91

#	Article	IF	CITATIONS
199	Tetrahydronaphthyridine and Dihydronaphthyridinone Ethers As Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 5 (mGlu ₅). Journal of Medicinal Chemistry, 2014, 57, 5620-5637.	6.4	13
200	Discovery of VU0431316: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3307-3314.	2.2	9
201	Development of a Highly Potent, Novel M ₅ Positive Allosteric Modulator (PAM) Demonstrating CNS Exposure: 1-((1 <i>H</i> -Indazol-5-yl)sulfoneyl)- <i>N</i> -ethyl- <i>N</i> -(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). Journal of Medicinal Chemistry, 2014, 57, 7804-7810.	6.4	28
202	Selective Activation of M ₄ Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents. ACS Chemical Neuroscience, 2014, 5, 920-942.	3.5	116
203	M4 mAChR-Mediated Modulation of Glutamatergic Transmission at Corticostriatal Synapses. ACS Chemical Neuroscience, 2014, 5, 318-324.	3.5	84
204	Identification of Specific Ligand–Receptor Interactions That Govern Binding and Cooperativity of Diverse Modulators to a Common Metabotropic Glutamate Receptor 5 Allosteric Site. ACS Chemical Neuroscience, 2014, 5, 282-295.	3.5	48
205	Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu _{2/3}) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence. Journal of Medicinal Chemistry. 2014. 57. 4154-4172.	6.4	36
206	Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5091-5096.	2.2	9
207	The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson's disease. Neuropharmacology, 2013, 66, 187-195.	4.1	27
208	Discovery of VU0409106: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5779-5785.	2.2	30
209	Further exploration of M1 allosteric agonists: Subtle structural changes abolish M1 allosteric agonism and result in pan-mAChR orthosteric antagonism. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 223-227.	2.2	8
210	Discovery of the First M ₅ -Selective and CNS Penetrant Negative Allosteric Modulator (NAM) of a Muscarinic Acetylcholine Receptor: (<i>S</i>)-9b-(4-Chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1 <i>H</i> -imidazo[2,1- <i>a</i>]isoindol-5(9b< (ML375). Journal of Medicinal Chemistry, 2013, 56, 9351-9355.	:i>H)-	one ²
211	Spirocyclic replacements for the isatin in the highly selective, muscarinic M1 PAM ML137: The continued optimization of an MLPCN probe molecule. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1860-1864.	2.2	28
212	Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu ₅) Receptor. Journal of Medicinal Chemistry, 2013, 56, 7243-7259.	6.4	20
213	Discovery of a selective M4 positive allosteric modulator based on the 3-amino-thieno[2,3-b]pyridine-2-carboxamide scaffold: Development of ML253, a potent and brain penetrant compound that is active in a preclinical model of schizophrenia. Bioorganic and Medicinal Chemistry Letters. 2013. 23. 346-350.	2.2	37
214	Functional selectivity induced by mGlu4 receptor positive allosteric modulation and concomitant activation of Gq coupled receptors. Neuropharmacology, 2013, 66, 122-132.	4.1	11
215	N-Acyl-N′-arylpiperazines as negative allosteric modulators of mGlu1: Identification of VU0469650, a potent and selective tool compound with CNS exposure in rats. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3713-3718.	2.2	14
216	Unique Signaling Profiles of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Determine Differences in In Vivo Activity. Biological Psychiatry, 2013, 73, 501-509.	1.3	95

#	Article	IF	CITATIONS
217	Discovery of ML326: The first sub-micromolar, selective M5 PAM. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2996-3000.	2.2	21
218	Modulation of pyramidal cell output in the medial prefrontal cortex by mGluR5 interacting with CB1. Neuropharmacology, 2013, 66, 170-178.	4.1	45
219	Discovery of (<i>R</i>)-(2-Fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-Hydroxypiperidin-1-yl)methanone (ML337), An mGlu ₃ Selective and CNS Penetrant Negative Allosteric Modulator (NAM). Journal of Medicinal Chemistry, 2013, 56, 5208-5212.	6.4	52
220	Isatin replacements applied to the highly selective, muscarinic M1 PAM ML137: Continued optimization of an MLPCN probe molecule. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 412-416.	2.2	20
221	Exploration of Allosteric Agonism Structure–Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu ₅) Positive Allosteric Modulators (PAMs): Discovery of 5-((3-Fluorophenyl)ethynyl)- <i>N</i> /i>-(3-methyloxetan-3-yl)picolinamide (ML254). Journal of Medicinal Chemistry. 2013. 56. 7976-7996.	6.4	28
222	Substituted 1-Phenyl-3-(pyridin-2-yl)urea Negative Allosteric Modulators of mGlu ₅ : Discovery of a New Tool Compound VU0463841 with Activity in Rat Models of Cocaine Addiction. ACS Chemical Neuroscience, 2013, 4, 1217-1228.	3.5	16
223	Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning. Learning and Memory, 2013, 20, 438-445.	1.3	32
224	Probing the Metabotropic Glutamate Receptor 5 (mGlu ₅) Positive Allosteric Modulator (PAM) Binding Pocket: Discovery of Point Mutations That Engender a "Molecular Switch―in PAM Pharmacology. Molecular Pharmacology, 2013, 83, 991-1006.	2.3	70
225	Biotransformation of a Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Contributes to Seizure-Like Adverse Events in Rats Involving a Receptor Agonism-Dependent Mechanism. Drug Metabolism and Disposition, 2013, 41, 1703-1714.	3.3	42
226	Heterotropic Activation of the Midazolam Hydroxylase Activity of CYP3A by a Positive Allosteric Modulator of mGlu ₅ : In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions. Drug Metabolism and Disposition, 2013, 41, 2066-2075.	3.3	20
227	Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks. Current Topics in Medicinal Chemistry, 2013, 13, 26-54.	2.1	74
228	Novel Positive Allosteric Modulators Bias Acetylcholine Signaling at Human M 4 Muscarinic Receptors. FASEB Journal, 2013, 27, 1171.4.	0.5	0
229	Effects of M1 and M4 muscarinic acetylcholine receptor positive allosteric modulators on sleep and cognition in rodents. FASEB Journal, 2013, 27, 661.8.	0.5	Ο
230	The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with I-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 404-421.	2.5	95
231	Investigating Metabotropic Glutamate Receptor 5 Allosteric Modulator Cooperativity, Affinity, and Agonism: Enriching Structure-Function Studies and Structure-Activity Relationships. Molecular Pharmacology, 2012, 82, 860-875.	2.3	90
232	Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson's disease. Neurodegenerative Disease Management, 2012, 2, 221-232.	2.2	25
233	Novel Allosteric Agonists of M1 Muscarinic Acetylcholine Receptors Induce Brain Region-Specific Responses That Correspond with Behavioral Effects in Animal Models. Journal of Neuroscience, 2012, 32, 8532-8544.	3.6	98
234	Allosteric Modulation of Seven Transmembrane Spanning Receptors: Theory, Practice, and Opportunities for Central Nervous System Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 1445-1464.	6.4	212

#	Article	IF	CITATIONS
235	Chemical Modification of the M ₁ Agonist VU0364572 Reveals Molecular Switches in Pharmacology and a Bitopic Binding Mode. ACS Chemical Neuroscience, 2012, 3, 1025-1036.	3.5	29
236	Drug Design Strategies for GPCR Allosteric Modulators. Annual Reports in Medicinal Chemistry, 2012, 47, 441-457.	0.9	16
237	Iterative experimental and virtual high-throughput screening identifies metabotropic glutamate receptor subtype 4 positive allosteric modulators. Journal of Molecular Modeling, 2012, 18, 4437-4446.	1.8	9
238	Discovery and SAR of a novel series of non-MPEP site mGlu5 PAMs based on an aryl glycine sulfonamide scaffold. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7388-7392.	2.2	16
239	Functional Impact of Allosteric Agonist Activity of Selective Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 in Regulating Central Nervous System Function. Molecular Pharmacology, 2012, 81, 120-133.	2.3	112
240	Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology, 2012, 62, 1461-1472.	4.1	84
241	Optimization of an ether series of mGlu5 positive allosteric modulators: Molecular determinants of MPEP-site interaction crossover. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6481-6485.	2.2	9
242	Roles of the M1 Muscarinic Acetylcholine Receptor Subtype in the Regulation of Basal Ganglia Function and Implications for the Treatment of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 595-603.	2.5	64
243	Targeting Selective Activation of M ₁ for the Treatment of Alzheimer's Disease: Further Chemical Optimization and Pharmacological Characterization of the M ₁ Positive Allosteric Modulator ML169. ACS Chemical Neuroscience, 2012, 3, 884-895.	3.5	41
244	Discovery of 2â€(2â€Benzoxazoyl amino)â€4â€Arylâ€5â€Cyanopyrimidine as Negative Allosteric Modulators (N of Metabotropic Glutamate Receptorâ€5 (mGlu ₅): From an Artificial Neural Network Virtual Screen to an In Vivo Tool Compound. ChemMedChem, 2012, 7, 406-414.	AMs) 3.2	38
245	Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacology, 2012, 220, 673-685.	3.1	35
246	Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3921-3925.	2.2	33
247	Emerging approaches for treatment of schizophrenia: modulation of cholinergic signaling. Discovery Medicine, 2012, 14, 413-20.	0.5	36
248	Emerging approaches for treatment of schizophrenia: modulation of glutamatergic signaling. Discovery Medicine, 2012, 14, 335-43.	0.5	31
249	Discovery, Synthesis, and Structureâ [^] Activity Relationship Development of a Series of <i>N</i> -(4-Acetamido)phenylpicolinamides as Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4 (mGlu ₄) with CNS Exposure in Rats. Journal of Medicinal Chemistry, 2011, 54, 1106-1110.	6.4	45
250	Allosteric Modulation of Metabotropic Glutamate Receptors. Advances in Pharmacology, 2011, 62, 37-77.	2.0	48
251	Discovery, Synthesis, and Structureat Activity Relationship Development of a Series of <i>N</i> -4-(2,5-Dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): Characterization of a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu ₄) with Oral Efficacy in an Antiparkinsonian Animal Model. Journal of Medicinal Chemistry, 2011, 54,	6.4	52
252	Targeting glutamate synapses in schizophrenia. Trends in Molecular Medicine, 2011, 17, 689-698.	6.7	87

#	Article	IF	CITATIONS
253	Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neuroscience Letters, 2011, 504, 102-106.	2.1	28
254	Solution-Phase Parallel Synthesis and SAR of Homopiperazinyl Analogs as Positive Allosteric Modulators of mGlu ₄ . ACS Combinatorial Science, 2011, 13, 159-165.	3.8	6
255	Allosteric modulation of metabotropic glutamate receptors: Structural insights and therapeutic potential. Neuropharmacology, 2011, 60, 66-81.	4.1	110
256	"Molecular Switches―on mGluR Allosteric Ligands That Modulate Modes of Pharmacology. Biochemistry, 2011, 50, 2403-2410.	2.5	155
257	Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6451-6455.	2.2	32
258	Discovery of molecular switches within the ADX-47273 mGlu5 PAM scaffold that modulate modes of pharmacology to afford potent mGlu5 NAMs, PAMs and partial antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2711-2714.	2.2	41
259	Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): The development of ML169, an MLPCN probe. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2697-2701.	2.2	63
260	Synthesis and SAR of centrally active mGlu5 positive allosteric modulators based on an aryl acetylenic bicyclic lactam scaffold. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1350-1353.	2.2	37
261	Discovery of a Novel Chemical Class of mGlu ₅ Allosteric Ligands with Distinct Modes of Pharmacology. ACS Chemical Neuroscience, 2010, 1, 702-716.	3.5	70
262	Discovery of <i>N</i> -Aryl Piperazines as Selective mGluR ₅ Potentiators with Improved In Vivo Utility. ACS Medicinal Chemistry Letters, 2010, 1, 433-438.	2.8	35
263	Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part I: Development of the first highly selective M5 PAM. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 558-562.	2.2	43
264	Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part II: Development of a potent and highly selective M1 PAM. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1972-1975.	2.2	51
265	3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu5: Identification of easily prepared tool compounds with CNS exposure in rats. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4390-4394.	2.2	20
266	Heterobiaryl and heterobiaryl ether derived M5 positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5617-5622.	2.2	29
267	Attenuation of Cocaine's Reinforcing and Discriminative Stimulus Effects via Muscarinic M ₁ Acetylcholine Receptor Stimulation. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 959-969.	2.5	44
268	Context-Dependent Pharmacology Exhibited by Negative Allosteric Modulators of Metabotropic Glutamate Receptor 7. Molecular Pharmacology, 2010, 77, 459-468.	2.3	73
269	Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity. Molecular Pharmacology, 2010, 78, 1105-1123.	2.3	176
270	Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Molecular BioSystems, 2010, 6, 1345.	2.9	58

#	Article	IF	CITATIONS
271	Identification of Metabotropic Glutamate Receptor Subtype 5 Potentiators Using Virtual High-Throughput Screening. ACS Chemical Neuroscience, 2010, 1, 288-305.	3.5	42
272	Differential Effects of Allosteric M ₁ Muscarinic Acetylcholine Receptor Agonists on Receptor Activation, Arrestin 3 Recruitment, and Receptor Downregulation. ACS Chemical Neuroscience, 2010, 1, 542-551.	3.5	22
273	Discovery and Characterization of Novel Subtype-Selective Allosteric Agonists for the Investigation of M ₁ Receptor Function in the Central Nervous System. ACS Chemical Neuroscience, 2010, 1, 104-121.	3.5	88
274	Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annual Review of Pharmacology and Toxicology, 2010, 50, 295-322.	9.4	1,510
275	Activation of Group II Metabotropic Glutamate Receptors (mGluR2 and mGluR3) as a Novel Approach for Treatment of Schizophrenia. , 2010, , 101-116.		1
276	The antipsychotic potential of muscarinic allosteric modulation. Drug News and Perspectives, 2010, 23, 229.	1.5	53
277	Orthosteric- and allosteric-induced ligand-directed trafficking at GPCRs. Current Opinion in Drug Discovery & Development, 2010, 13, 587-94.	1.9	16
278	Discovery and Characterization of Novel Allosteric Potentiators of M ₁ Muscarinic Receptors Reveals Multiple Modes of Activity. Molecular Pharmacology, 2009, 75, 577-588.	2.3	135
279	mGluR5 Positive Allosteric Modulators Facilitate both Hippocampal LTP and LTD and Enhance Spatial Learning. Neuropsychopharmacology, 2009, 34, 2057-2071.	5.4	199
280	Discovery and Development of a Potent and Highly Selective Small Molecule Muscarinic Acetylcholine Receptor Subtype I (mAChR 1 or M1) Antagonist In Vitro and In Vivo Probe. Current Topics in Medicinal Chemistry, 2009, 9, 1217-1226.	2.1	14
281	Promise of mGluR2/3 activators in psychiatry. Neuropsychopharmacology, 2009, 34, 248-249.	5.4	34
282	A Novel Selective Muscarinic Acetylcholine Receptor Subtype 1 Antagonist Reduces Seizures without Impairing Hippocampus-Dependent Learning. Molecular Pharmacology, 2009, 76, 356-368.	2.3	121
283	A Selective Allosteric Potentiator of the M ₁ Muscarinic Acetylcholine Receptor Increases Activity of Medial Prefrontal Cortical Neurons and Restores Impairments in Reversal Learning. Journal of Neuroscience, 2009, 29, 14271-14286.	3.6	217
284	Synthesis and Structure–Activity Relationships of Allosteric Potentiators of the M ₄ Muscarinic Acetylcholine Receptor. ChemMedChem, 2009, 4, 1600-1607.	3.2	35
285	Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Reviews Drug Discovery, 2009, 8, 41-54.	46.4	929
286	Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: Challenges in hit-to-lead. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 962-966.	2.2	49
287	Structureâ [°] 'Activity Relationships Comparing <i>N</i> -(6-Methylpyridin-yl)-Substituted Aryl Amides to 2-Methyl-6-(substituted-arylethynyl)pyridines or 2-Methyl-4-(substituted-arylethynyl)thiazoles as Novel Metabotropic Glutamate Receptor Subtype 5 Antagonists. Journal of Medicinal Chemistry, 2009, 52, 3563-3575.	6.4	38
288	Discovery of Molecular Switches That Modulate Modes of Metabotropic Glutamate Receptor Subtype 5 (mGlu ₅) Pharmacology in Vitro and in Vivo within a Series of Functionalized, Regioisomeric 2- and 5-(Phenylethynyl)pyrimidines. Journal of Medicinal Chemistry, 2009, 52, 4103-4106.	6.4	72

#	Article	IF	CITATIONS
289	Synthesis and Evaluation of a Series of Heterobiarylamides That Are Centrally Penetrant Metabotropic Glutamate Receptor 4 (mGluR4) Positive Allosteric Modulators (PAMs). Journal of Medicinal Chemistry, 2009, 52, 4115-4118.	6.4	79
290	Discovery of the First Highly M5-Preferring Muscarinic Acetylcholine Receptor Ligand, an M5 Positive Allosteric Modulator Derived from a Series of 5-Trifluoromethoxy <i>N</i> -Benzyl Isatins. Journal of Medicinal Chemistry, 2009, 52, 3445-3448.	6.4	92
291	Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends in Pharmacological Sciences, 2009, 30, 25-31.	8.7	325
292	Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends in Pharmacological Sciences, 2009, 30, 148-155.	8.7	258
293	Synthesis and SAR of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor 4 (mGluR4). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4967-4970.	2.2	33
294	Glutamate Receptors as Therapeutic Targets for Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2009, 8, 475-491.	1.4	209
295	Synthesis and SAR of a mGluR5 allosteric partial antagonist lead: Unexpected modulation of pharmacology with slight structural modifications to a 5-(phenylethynyl)pyrimidine scaffold. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4098-4101.	2.2	80
296	Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4): Part I. Discovery of pyrazolo[3,4-d]pyrimidines as novel mGluR4 positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5626-5630.	2.2	55
297	Synthesis and SAR of analogues of the M1 allosteric agonist TBPB. Part I: Exploration of alternative benzyl and privileged structure moieties. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5439-5442.	2.2	37
298	Synthesis and SAR of analogs of the M1 allosteric agonist TBPB. Part II: Amides, sulfonamides and ureas—The effect of capping the distal basic piperidine nitrogen. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5443-5447.	2.2	29
299	An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nature Chemical Biology, 2008, 4, 42-50.	8.0	144
300	Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology, 2008, 54, 804-814.	4.1	68
301	Metabotropic glutamate receptors mGluR4 and mGluR8 regulate transmission in the lateral olfactory tract–piriform cortex synapse. Neuropharmacology, 2008, 55, 440-446.	4.1	18
302	Allosteric potentiators of metabotropic glutamate receptor subtype 1a differentially modulate independent signaling pathways in baby hamster kidney cells. Neuropharmacology, 2008, 55, 419-427.	4.1	41
303	A Novel Assay of G _{i/o} -Linked G Protein-Coupled Receptor Coupling to Potassium Channels Provides New Insights into the Pharmacology of the Group III Metabotropic Glutamate Receptors. Molecular Pharmacology, 2008, 73, 1213-1224.	2.3	99
304	Discovery, Characterization, and Antiparkinsonian Effect of Novel Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4. Molecular Pharmacology, 2008, 74, 1345-1358.	2.3	187
305	Novel Selective Allosteric Activator of the M ₁ Muscarinic Acetylcholine Receptor Regulates Amyloid Processing and Produces Antipsychotic-Like Activity in Rats. Journal of Neuroscience, 2008, 28, 10422-10433.	3.6	219
306	<i>N</i> -{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2 <i>H</i> -isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) Acts through a Novel Site as a Positive Allosteric Modulator of Group 1 Metabotropic Glutamate Receptors. Molecular Pharmacology, 2008, 73, 909-918.	2.3	91

#	Article	IF	CITATIONS
307	Centrally Active Allosteric Potentiators of the M ₄ Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 941-953.	2.5	177
308	Opportunities and Challenges of Psychiatric Drug Discovery: Roles for Scientists in Academic, Industry, and Government Settings. Neuropsychopharmacology, 2008, 33, 2048-2060.	5.4	80
309	Schizophrenia: Moving Beyond Monoamine Antagonists. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 99-107.	3.4	82
310	Characterization of novel selective positive allosteric modulators (PAMS) of the M4 muscarinic acetylcholine receptor (mAChR). FASEB Journal, 2008, 22, 714.2.	0.5	0
311	A Positive Allosteric Modulator of mGluR5 Potentiates DHPGâ€induced Long Term Depression at the Schaffer Collateral–CA1 Synapse of the Rat Hippocampus. FASEB Journal, 2008, 22, 714.4.	0.5	0
312	Overview of drug discovery and development: traditional and evolving roles of academic institutions. FASEB Journal, 2008, 22, 103.1.	0.5	0
313	Interaction of Novel Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 with the Negative Allosteric Antagonist Site Is Required for Potentiation of Receptor Responses. Molecular Pharmacology, 2007, 71, 1389-1398.	2.3	81
314	A Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 2 Blocks a Hallucinogenic Drug Model of Psychosis. Molecular Pharmacology, 2007, 72, 477-484.	2.3	150
315	A Novel Family of Potent Negative Allosteric Modulators of Group II Metabotropic Glutamate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 254-264.	2.5	67
316	Challenges in the development of mGluR5 positive allosteric modulators: The discovery of CPPHA. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1386-1391.	2.2	68
317	D1―and D2â€like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. European Journal of Neuroscience, 2007, 26, 852-862.	2.6	19
318	Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors. Current Opinion in Pharmacology, 2006, 6, 98-102.	3.5	102
319	Substituent Effects ofN-(1,3-Diphenyl-1H-pyrazol-5-yl)benzamides on Positive Allosteric Modulation of the Metabotropic Glutamate-5 Receptor in Rat Cortical Astrocytes. Journal of Medicinal Chemistry, 2006, 49, 3332-3344.	6.4	132
320	Biphenyl-indanone A, a Positive Allosteric Modulator of the Metabotropic Glutamate Receptor Subtype 2, Has Antipsychotic- and Anxiolytic-Like Effects in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 173-185.	2.5	162
321	A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators. Molecular Pharmacology, 2006, 70, 616-626.	2.3	61
322	Metabotropic glutamate receptors in the basal ganglia motor circuit. Nature Reviews Neuroscience, 2005, 6, 787-798.	10.2	297
323	Group III Metabotropic Glutamate-Receptor-Mediated Modulation of Excitatory Transmission in Rodent Substantia Nigra Pars Compacta Dopamine Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1296-1304.	2.5	83
324	A Close Structural Analog of 2-Methyl-6-(phenylethynyl)-pyridine Acts as a Neutral Allosteric Site Ligand on Metabotropic Glutamate Receptor Subtype 5 and Blocks the Effects of Multiple Allosteric Modulators. Molecular Pharmacology, 2005, 68, 1793-1802.	2.3	113

#	Article	IF	CITATIONS
325	A Selective Allosteric Potentiator of Metabotropic Glutamate (mGlu) 2 Receptors Has Effects Similar to an Orthosteric mGlu2/3 Receptor Agonist in Mouse Models Predictive of Antipsychotic Activity. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1181-1187.	2.5	165
326	Allosteric Potentiators of Metabotropic Glutamate Receptor Subtype 5 Have Differential Effects on Different Signaling Pathways in Cortical Astrocytes. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1212-1219.	2.5	101
327	A Novel Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Has in Vivo Activity and Antipsychotic-Like Effects in Rat Behavioral Models. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 199-206.	2.5	289
328	Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology, 2005, 49, 57-69.	4.1	45
329	NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology, 2005, 49, 135-145.	4.1	146
330	A Novel Selective Allosteric Modulator Potentiates the Activity of Native Metabotropic Glutamate Receptor Subtype 5 in Rat Forebrain. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 568-577.	2.5	175
331	Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. Journal of Physiology, 2004, 561, 395-401.	2.9	25
332	The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology, 2004, 175, 310-318.	3.1	107
333	Discovery of Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 5 from a Series of N-(1,3-Diphenyl-1H- pyrazol-5-yl)benzamides That Potentiate Receptor Function in Vivo. Journal of Medicinal Chemistry, 2004, 47, 5825-5828.	6.4	164
334	Physiological Roles and Therapeutic Potential of Metabotropic Glutamate Receptors. Annals of the New York Academy of Sciences, 2003, 1003, 12-21.	3.8	144
335	Modulation of Excitatory Transmission onto Midbrain Dopaminergic Neurons of the Rat by Activation of Group III Metabotropic Glutamate Receptors. Annals of the New York Academy of Sciences, 2003, 1003, 479-480.	3.8	9
336	Metabotropic Glutamate Subtype 5 Receptors Modulate Locomotor Activity and Sensorimotor Gating in Rodents. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 116-123.	2.5	207
337	Allosteric modulation of group III metabotropic glutamate receptor 4: A potential approach to Parkinson's disease treatment. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13668-13673.	7.1	227
338	A Family of Highly Selective Allosteric Modulators of the Metabotropic Glutamate Receptor Subtype 5. Molecular Pharmacology, 2003, 64, 731-740.	2.3	226
339	N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13674-13679.	7.1	269
340	Group III Metabotropic Glutamate Receptor-Mediated Modulation of the Striatopallidal Synapse. Journal of Neuroscience, 2003, 23, 7218-7226.	3.6	154
341	Direct and Indirect Modulation of the N-Methyl D-Aspartate Receptor: Potential for the Development of Novel Antipsychotic Therapies. CNS and Neurological Disorders, 2002, 1, 1-16.	4.3	117
342	Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. Journal of Cellular Physiology, 2002, 191, 125-137.	4.1	107

#	Article	IF	CITATIONS
343	Differential regulation of metabotropic glutamate receptor 5-mediated phosphoinositide hydrolysis and extracellular signal-regulated kinase responses by protein kinase C in cultured astrocytes. Journal of Neurochemistry, 2002, 83, 110-118.	3.9	24
344	Metabotropic Glutamate Receptors 1 and 5 Differentially Regulate CA1 Pyramidal Cell Function. Journal of Neuroscience, 2001, 21, 5925-5934.	3.6	401
345	Cyclic AMP-dependent protein kinase phosphorylates group III metabotropic glutamate receptors and inhibits their function as presynaptic receptors. Journal of Neurochemistry, 2001, 78, 756-766.	3.9	54
346	Up-regulation of the metabotropic glutamate receptor mGluR4 in hippocampal neurons with reduced seizure vulnerability. Annals of Neurology, 2000, 47, 26-35.	5.3	74
347	Peripheral Glutamate Receptors: Molecular Biology and Role in Taste Sensation. Journal of Nutrition, 2000, 130, 1039S-1042S.	2.9	31
348	Activation of Group II Metabotropic Glutamate Receptors Inhibits Synaptic Excitation of the Substantia Nigra Pars Reticulata. Journal of Neuroscience, 2000, 20, 3085-3094.	3.6	130
349	Activation of Metabotropic Glutamate Receptor 5 Has Direct Excitatory Effects and Potentiates NMDA Receptor Currents in Neurons of the Subthalamic Nucleus. Journal of Neuroscience, 2000, 20, 7871-7879.	3.6	391
350	Upâ€regulation of the metabotropic glutamate receptor mGluR4 in hippocampal neurons with reduced seizure vulnerability. Annals of Neurology, 2000, 47, 26-35.	5.3	3
351	Distribution of Group III mGluRs in Rat Basal Ganglia with Subtype-Specific Antibodies. Annals of the New York Academy of Sciences, 1999, 868, 531-534.	3.8	53
352	Activation of PKC Disrupts Presynaptic Inhibition by Group II and Group III Metabotropic Glutamate Receptors and Uncouples the Receptor from GTP-Binding Proteins. Annals of the New York Academy of Sciences, 1999, 868, 554-557.	3.8	21
353	Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla oblongata of the rat. , 1999, 403, 486-501.		56
354	Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. Journal of Comparative Neurology, 1999, 407, 33-46.	1.6	152
355	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. , 1999, 415, 266-284.		138
356	Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla oblongata of the rat. Journal of Comparative Neurology, 1999, 403, 486-501.	1.6	2
357	Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. Journal of Comparative Neurology, 1999, 407, 33-46.	1.6	1
358	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. Journal of Comparative Neurology, 1999, 415, 266-284.	1.6	1
359	RGS4 Inhibits Signaling by Group I Metabotropic Glutamate Receptors. Journal of Neuroscience, 1998, 18, 905-913.	3.6	132
360	Phosphorylation of Mitogenâ€Activated Protein Kinase in Cultured Rat Cortical Glia by Stimulation of Metabotropic Glutamate Receptors. Journal of Neurochemistry, 1998, 71, 603-612.	3.9	90

#	Article	IF	CITATIONS
361	Distribution and Developmental Regulation of Metabotropic Glutamate Receptor 7a in Rat Brain. Journal of Neurochemistry, 1998, 71, 636-645.	3.9	81
362	PHARMACOLOGY AND FUNCTIONS OF METABOTROPIC GLUTAMATE RECEPTORS. Annual Review of Pharmacology and Toxicology, 1997, 37, 205-237.	9.4	2,824
363	Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. , 1996, 46, 131-137.		62
364	Metabotropic Glutamate Receptor (mGluR)â€Mediated Potentiation of Cyclic AMP Responses Does Not Require Phosphoinositide Hydrolysis: Mediation by a Group Il‣ike mGluR. Journal of Neurochemistry, 1995, 64, 592-599.	3.9	46
365	4â€Bromohomoibotenic Acid Selectively Activates a 1â€Aminocyclopentaneâ€1 <i>S</i> ,3 <i>R</i> â€Dicarboxylic Acidâ€Insensitive Metabotropic Glutamate Receptor Coupled to Phosphoinositide Hydrolysis in Rat Cortical Slices. Journal of Neurochemistry, 1994, 63, 133-139.	3.9	13
366	Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse, 1992, 12, 206-213.	1.2	56
367	Activation of Metabotropic Glutamate Receptors in the Hippocampus Increases Cyclic AMP Accumulation. Journal of Neurochemistry, 1992, 59, 375-378.	3.9	73
368	Metabotropic Excitatory Amino Acid Receptor Activation Stimulates Phospholipase D in Hippocampal Slices. Journal of Neurochemistry, 1992, 59, 2340-2343.	3.9	78
369	Pharmacology and physiology of metabotropic glutamate receptors in mammalian central nervous system. Drug Development Research, 1991, 24, 207-229.	2.9	47
370	Agonist-Induced Phosphoinositide Hydrolysis in Choroid Plexus. Journal of Neurochemistry, 1986, 47, 1754-1760.	3.9	69