Mallory Mativenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312061/publications.pdf

Version: 2024-02-01

136740 189595 2,892 110 32 50 citations h-index g-index papers 110 110 110 1845 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Pâ€25: <i>Student Poster: </i> Solutionâ€Processed CH ₃ NH ₃ Pbl ₃ /ZnO Phototransistor with High Photodetectivity. Digest of Technical Papers SID International Symposium, 2022, 53, 1130-1133.	0.1	O
2	Reduction of Hysteresis in Hybrid Perovskite Transistors by Solvent-Controlled Growth. Materials, 2021, 14, 2573.	1.3	6
3	A feasibility study of a portable intraoperative specimen imaging Xâ€ray system based on carbon nanotube field emitters. International Journal of Imaging Systems and Technology, 2021, 31, 1128-1135.	2.7	3
4	56â€3: <i>Student Paper: ⟨i⟩ An Amplifier with Higher Gain Using Corbinoâ€"TFTs. Digest of Technical Papers SID International Symposium, 2021, 52, 784-787.</i>	0.1	O
5	Effects of Structural Phase Transitions on Hysteresis in Airâ€Processed Organic–Inorganic Halide Perovskite Thinâ€Film Transistors. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100211.	1.2	3
6	Origin of light instability in amorphous IGZO thin-film transistors and its suppression. Scientific Reports, 2021, 11, 14618.	1.6	46
7	Compact X-Ray Tube With Ceramic Vacuum Seal for Portable and Robust Dental Imaging. IEEE Transactions on Electron Devices, 2021, 68, 4705-4710.	1.6	6
8	Highly Stable Thin-Film Transistors for Flexible and Transparent Displays. , 2021, , .		0
9	Pâ€121: Solution Processed Organicâ€Inorganic Hybrid Perovskite TFTs with Excellent Ambient Air Stability. Digest of Technical Papers SID International Symposium, 2020, 51, 1825-1828.	0.1	O
10	Ambient-Air-Processed Ambipolar Perovskite Phototransistor With High Photodetectivity. IEEE Transactions on Electron Devices, 2020, 67, 3215-3220.	1.6	7
11	Halide perovskite memtransistor enabled by ion migration. Japanese Journal of Applied Physics, 2020, 59, 081002.	0.8	15
12	Highly Sensitive and Ambient Air-Processed Hybrid Perovskite TFT Temperature Sensor. IEEE Electron Device Letters, 2020, 41, 1086-1089.	2.2	8
13	Impact of Source-to-Gate and Drain-to-Gate Overlap Lengths on Performance of Inverted Staggered a-IGZO TFTs With an Etch Stopper. IEEE Transactions on Electron Devices, 2020, 67, 3152-3156.	1.6	12
14	Ambient Air Stability of Hybrid Perovskite Thinâ€Film Transistors by Ambient Air Processing. Advanced Materials Interfaces, 2020, 7, 1901777.	1.9	20
15	Threshold voltage shift-proof circular oxide thin film transistor with top and bottom gates for high bending stability. Japanese Journal of Applied Physics, 2020, 59, 104001.	0.8	4
16	Effect of Precursor Composition on Ion Migration in Hybrid Perovskite CH ₃ NH ₃ Pbl ₃ . IEEE Electron Device Letters, 2019, 40, 1756-1759.	2.2	18
17	Design and Fabrication of CNT-Based \${E}\$ -Gun Using Stripe-Patterned Alloy Substrate for X-Ray Applications. IEEE Transactions on Electron Devices, 2019, 66, 5301-5304.	1.6	11
18	Ambipolar Transport in Methylammonium Lead Iodide Thin Film Transistors. Crystals, 2019, 9, 539.	1.0	13

#	Article	IF	CITATIONS
19	Fast-Switching Mixed A-Cation Organic-Inorganic Hybrid Perovskite TFTs. IEEE Electron Device Letters, 2019, 40, 917-920.	2.2	18
20	Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications. Nanomaterials, 2018, 8, 378.	1.9	46
21	Thermal Stability Improvement of Back Channel Etched a-IGZO TFTs by Using Fluorinated Organic Passivation. ECS Journal of Solid State Science and Technology, 2018, 7, Q123-Q126.	0.9	9
22	Touch Sensor Array With Integrated Drivers and Comparator Using a-IGZO TFTs. IEEE Electron Device Letters, 2017, 38, 391-394.	2.2	32
23	Enhanced Operation of Back-Channel-Etched a-IGZO TFTs by Fluorine Treatment during Source/Drain Wet-Etching. ECS Journal of Solid State Science and Technology, 2017, 6, P300-P303.	0.9	9
24	Highly Robust Bendable Oxide Thinâ€Film Transistors on Polyimide Substrates via Mesh and Strip Patterning of Device Layers. Advanced Functional Materials, 2017, 27, 1700437.	7.8	62
25	Piezoelectric Pressure Sensing Device Using Top-Gate Effect of Dual-Gate a-IGZO TFT. IEEE Sensors Journal, 2017, 17, 585-586.	2.4	32
26	Pâ€⊋9: Flexible Gate Driver for Bendable AMOLED Display with Homojunction Oxide TFTs. Digest of Technical Papers SID International Symposium, 2017, 48, 1335-1338.	0.1	1
27	Pâ€22: Spice Model for Detection of Dynamic Threshold Voltage Shift During Failure Analysis of Oxide TFTâ€Based AMD Gate Drivers. Digest of Technical Papers SID International Symposium, 2017, 48, 1307-1310.	0.1	0
28	Spice model for detection of dynamic threshold voltage shift during failure analysis of oxide TFTâ€based AMD gate drivers. Journal of the Society for Information Display, 2017, 25, 663-671.	0.8	2
29	Circular Structure for High Mechanical Bending Stability of a-IGZO TFTs. IEEE Journal of the Electron Devices Society, 2017, 5, 453-457.	1.2	27
30	Reduction of Bias and Light Instability of Mixed Oxide Thin-Film Transistors. Applied Sciences (Switzerland), 2017, 7, 885.	1.3	25
31	P-8: Corbino Oxide TFts for Flexible AMOLED Display Stability. Digest of Technical Papers SID International Symposium, 2016, 47, 1147-1150.	0.1	2
32	64-3: <i>Distinguished Student Paper</i> : Bulk Accumulation Oxide TFTs for Flexible AMOLED Display with High Yield Integrated Gate Driver. Digest of Technical Papers SID International Symposium, 2016, 47, 872-875.	0.1	12
33	P-1: <i>Distinguished Student Poster</i> : Oxide TFT with Split Source Drain Electrodes for Highly Flexible Display. Digest of Technical Papers SID International Symposium, 2016, 47, 1125-1128.	0.1	4
34	P-206L: <i>Late-News Poster</i> : QVGA AMOLED Displays Using the Carbon Nanotube Enabled Vertical Organic Light Emitting Transistor. Digest of Technical Papers SID International Symposium, 2016, 47, 1796-1798.	0.1	9
35	P-7: High Performance LTPS Thin-film Transistors using Low Cost Polycrystalline Silicon by Blue Laser Annealing. Digest of Technical Papers SID International Symposium, 2016, 47, 1143-1146.	0.1	4
36	(Invited) Highly Robust a-IGZO TFT for Foldable Displays. ECS Transactions, 2016, 75, 201-204.	0.3	1

3

#	Article	IF	CITATIONS
37	Fast Threshold Voltage Compensation AMOLED Pixel Circuit Using Secondary Gate Effect of Dual Gate a-IGZO TFTs. IEEE Electron Device Letters, 2016, 37, 1450-1453.	2.2	23
38	Low temperature polycrystalline silicon with single orientation on glass by blue laser annealing. Thin Solid Films, 2016, 616, 838-841.	0.8	28
39	Double-Gate Modulated Corbino TFTs. IEEE Electron Device Letters, 2016, 37, 1143-1146.	2.2	3
40	Highly Robust Neutral Plane Oxide TFTs Withstanding 0.25 mm Bending Radius for Stretchable Electronics. Scientific Reports, 2016, 6, 25734.	1.6	94
41	Analysis of Improved Performance Under Negative Bias Illumination Stress of Dual Gate Driving a- IGZO TFT by TCAD Simulation. IEEE Electron Device Letters, 2016, , 1-1.	2.2	46
42	Full-Swing Clock Generating Circuits on Plastic Using a-IGZO Dual-Gate TFTs With Pseudo-CMOS and Bootstrapping. IEEE Electron Device Letters, 2016, 37, 882-885.	2.2	35
43	7-4: AMOLED Pixel Circuit using Dual Gate a-IGZO TFTs for Simple Scheme and High Speed V _{TH} Extraction. Digest of Technical Papers SID International Symposium, 2016, 47, 65-68.	0.1	10
44	Lateral Grain Growth of Amorphous Silicon Films With Wide Thickness Range by Blue Laser Annealing and Application to High Performance Poly-Si TFTs. IEEE Electron Device Letters, 2016, 37, 291-294.	2.2	47
45	Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors. Journal of Applied Physics, 2015, 117, .	1.1	9
46	59.2: Highlyâ€Stable and Transparent Oxide TFTs for Rollable Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 883-886.	0.1	6
47	29.3: High Resolution Flexible AMOLED with Integrated Gateâ€Driver using Bulkâ€Accumulation aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2015, 46, 423-426.	0.1	8
48	High Current Stress-Induced Heating Effects in Thin-Film Transistors on Plastic: Oxide Vs. Ltps. ECS Transactions, 2015, 67, 73-78.	0.3	7
49	Pâ€154L: <i>Lateâ€News Poster</i> : Stability Enhancement of Oxide TFTs By Blue Laser Annealing. Digest of Technical Papers SID International Symposium, 2015, 46, 1228-1230.	0.1	1
50	Pâ€52: Highâ€Gain Source Followers Driven by Corbino Oxide TFTs for Integrated Display Data Drivers. Digest of Technical Papers SID International Symposium, 2015, 46, 1330-1333.	0.1	0
51	Pâ€51: A Compact aâ€IGZO TFTâ€Based Digitalâ€ŧoâ€Analog Converter for Flexible Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 1326-1329.	0.1	2
52	High-Performance Homojunction a-IGZO TFTs With Selectively Defined Low-Resistive a-IGZO Source/Drain Electrodes. IEEE Transactions on Electron Devices, 2015, 62, 2212-2218.	1.6	37
53	Bulk-Accumulation Oxide Thin-Film Transistor Circuits With Zero Gate-to-Drain Overlap Capacitance for High Speed. IEEE Electron Device Letters, 2015, 36, 1329-1331.	2.2	17
54	High-Speed Pseudo-CMOS Circuits Using Bulk Accumulation a-IGZO TFTs. IEEE Electron Device Letters, 2015, 36, 153-155.	2.2	61

#	Article	IF	Citations
55	Fully Transparent and Rollable Electronics. ACS Applied Materials & Electronics. ACS	4.0	115
56	Highly Robust Flexible Oxide Thin-Film Transistors by Bulk Accumulation. IEEE Electron Device Letters, 2015, 36, 811-813.	2.2	38
57	30 <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> -Pitch Oxide TFT-Based Gate Driver Design for Small-Size, High-Resolution, and Narrow-Bezel Displays. IEEE Electron Device Letters, 2015, 36, 805-807.	2.2	55
58	Effect of SiO ₂ and SiO ₂ Passivation on the Stability of Amorphous Indium-Gallium Zinc-Oxide Thin-Film Transistors Under High Humidity. IEEE Transactions on Electron Devices, 2015, 62, 869-874.	1.6	68
59	Modification of Electrode-Etchant for Sidewall Profile Control and Reduced Back-Channel Corrosion of Inverted-Staggered Metal-Oxide TFTs. ECS Journal of Solid State Science and Technology, 2015, 4, Q124-Q129.	0.9	16
60	Effect of Bulk-Accumulation on Switching Speed of Dual-Gate a-IGZO TFT-Based Circuits. IEEE Electron Device Letters, 2014, 35, 1242-1244.	2.2	30
61	All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications. Materials, 2014, 7, 1975-1983.	1.3	13
62	Field-induced carrier generation in amorphous-InGaZnO4 thin-film transistors. Solid State Communications, 2014, 194, 54-58.	0.9	6
63	Pâ€7: High Speed aâ€IGZO TFTâ€based Gate Driver by using Back Channel Etched Structure. Digest of Technical Papers SID International Symposium, 2014, 45, 968-971.	0.1	11
64	Extreme bending test of IGZO TFT., 2014,,.		2
65	49.2: Corbino TFTs for Largeâ€Area AMOLED Displays. Digest of Technical Papers SID International Symposium, 2014, 45, 705-708.	0.1	4
66	3.1: <i>Invited Paper</i> : Oxide Versus LTPS TFTs for Activeâ€Matrix Displays. Digest of Technical Papers SID International Symposium, 2014, 45, 1-4.	0.1	32
67	Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer. Applied Physics Letters, 2014, 104, 022115.	1.5	64
68	Defect generation in amorphous-indium-gallium-zinc-oxide thin-film transistors by positive bias stress at elevated temperature. Journal of Applied Physics, 2014, 115, .	1.1	23
69	Reduction of Negative Bias and Light Instability of a-IGZO TFTs by Dual-Gate Driving. IEEE Electron Device Letters, 2014, 35, 93-95.	2.2	53
70	Intrinsic Channel Mobility of Amorphous, In–Ga–Zn–O Thin-Film Transistors by a Gated Four-Probe Method. IEEE Transactions on Electron Devices, 2014, 61, 2106-2112.	1.6	13
71	Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y2O3 passivation. Applied Physics Letters, 2014, 105, .	1.5	33
72	High-Speed Dual-Gate a-IGZO TFT-Based Circuits With Top-Gate Offset Structure. IEEE Electron Device Letters, 2014, 35, 461-463.	2.2	77

#	Article	IF	Citations
73	Infinite Output Resistance of Corbino Thin-Film Transistors With an Amorphous-InGaZnO Active Layer for Large-Area AMOLED Displays. IEEE Transactions on Electron Devices, 2014, 61, 3199-3205.	1.6	25
74	Removal of Negative-Bias-Illumination-Stress Instability in Amorphous-InGaZnO Thin-Film Transistors by Top-Gate Offset Structure. IEEE Electron Device Letters, 2014, 35, 930-932.	2.2	51
75	Reduction of Positive-Bias-Stress Effects in Bulk-Accumulation Amorphous-InGaZnO TFTs. IEEE Electron Device Letters, 2014, 35, 560-562.	2.2	32
76	Increase of mobility in dual gate amorphous-InGaZnO4 thin-film transistors by pseudo-doping. Applied Physics Letters, 2013, 103, .	1.5	16
77	Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress. Applied Physics Letters, 2013, 103, .	1.5	76
78	Reliability of oxide TFT for display application. , 2013, , .		1
79	Bulk Accumulation a-IGZO TFT for High Current and Turn-On Voltage Uniformity. IEEE Electron Device Letters, 2013, 34, 1533-1535.	2.2	120
80	Channel Length Dependent Bias-Stability of Self-Aligned Coplanar a-IGZO TFTs. Journal of Display Technology, 2013, 9, 985-988.	1.3	27
81	(Invited) Channel Width and Channel Length Dependencies in Amorphous-Oxide-Semiconductor Thin-Film Transistors: From a Device Structure Perspective. ECS Transactions, 2013, 50, 151-159.	0.3	7
82	P.22: Improving Switching Characteristics of Amorphousâ€InGaZnO ₄ Thinâ€Film Transistors by Dualâ€Gate Driving. Digest of Technical Papers SID International Symposium, 2013, 44, 1062-1065.	0.1	1
83	Achieving High Performance Oxide TFT-Based Inverters by Use of Dual-Gate Configurations With Floating and Biased Secondary Gates. IEEE Transactions on Electron Devices, 2013, 60, 3787-3793.	1.6	41
84	High current stress effects in amorphous-InGaZnO4 thin-film transistors. Applied Physics Letters, 2013, 102, .	1.5	53
85	Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors. Applied Physics Letters, 2013, 102, .	1.5	48
86	67.1: <i>Distinguished Student Paper</i> : 40 umâ€pitch IGZO TFT Gate Driver for Highâ€resolution Rollable AMOLED. Digest of Technical Papers SID International Symposium, 2013, 44, 927-930.	0.1	20
87	Amorphous-InGaZnO4 Thin-Film Transistors with Damage-Free Back Channel Wet-Etch Process. ECS Solid State Letters, 2012, 1, Q17-Q19.	1.4	84
88	Edge Effects in Bottom-Gate Inverted Staggered Thin-Film Transistors. IEEE Transactions on Electron Devices, 2012, 59, 2501-2506.	1.6	27
89	Performance of 5-nm a-IGZO TFTs With Various Channel Lengths and an Etch Stopper Manufactured by Back UV Exposure. IEEE Electron Device Letters, 2012, 33, 824-826.	2.2	33
90	Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures. AIP Advances, 2012, 2, 032129.	0.6	10

#	Article	IF	CITATIONS
91	A Three-Mask-Processed Coplanar a-IGZO TFT With Source and Drain Offsets. IEEE Electron Device Letters, 2012, 33, 812-814.	2.2	24
92	Study of mechanism of stress-induced threshold voltage shift and recovery in top-gate amorphous-InGaZnO4 thin-film transistors with source- and drain-offsets. Solid State Communications, 2012, 152, 1739-1743.	0.9	12
93	3.3: Highâ€Speed Shiftâ€Register for High Resolution AMD with Selfâ€aligned Coplanar aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2012, 43, 8-10.	0.1	2
94	High-Speed and Low-Voltage-Driven Shift Register With Self-Aligned Coplanar a-IGZO TFTs. IEEE Electron Device Letters, 2012, 33, 1012-1014.	2.2	54
95	Increase of interface and bulk density of states in amorphous-indium-gallium-zinc-oxide thin-film transistors with negative-bias-under-illumination-stress time. Applied Physics Letters, 2012, 101, .	1.5	67
96	High-Performance Drain-Offset a-IGZO Thin-Film Transistors. IEEE Electron Device Letters, 2011, 32, 644-646.	2.2	53
97	A Full-Swing a-IGZO TFT-Based Inverter With a Top-Gate-Bias-Induced Depletion Load. IEEE Electron Device Letters, 2011, 32, 1089-1091.	2.2	99
98	Transparent Flexible Circuits Based on Amorphous-Indium–Gallium–Zinc–Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2011, 32, 170-172.	2.2	174
99	Design of a lowâ€powerâ€consumption aâ€lGZO TFTâ€based V <i>com</i> driver circuit with longâ€term reliability. Journal of the Society for Information Display, 2011, 19, 825-832.	0.8	11
100	Pâ€13: A Fullâ€Swing aâ€IGZO TFTâ€Based Inverter with a Top Gateâ€Induced Depletion Load. Digest of Technica Papers SID International Symposium, 2011, 42, 1144-1147.	al 0.1	1
101	26.3 Design of a Low Power Consumption aâ€IGZO TFTâ€based Vcom Driver Circuit with Longâ€Term Reliability. Digest of Technical Papers SID International Symposium, 2011, 42, 338-341.	0.1	2
102	Degradation Model of Self-Heating Effects in Silicon-on-Glass TFTs. IEEE Transactions on Electron Devices, 2011, 58, 2440-2447.	1.6	29
103	Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths. Applied Physics Letters, 2011, 99, .	1.5	80
104	Reduction of Hot Carrier Effects in Silicon-on-Glass TFTs. Journal of the Electrochemical Society, 2011, 158, J169-J174.	1.3	1
105	Low Voltage-Driven CMOS Circuits Based on SiOG. Electrochemical and Solid-State Letters, 2011, 14, J1.	2.2	1
106	Highly stable amorphous indium–gallium–zinc-oxide thin-film transistor using an etch-stopper and a via-hole structure. Journal of Information Display, 2011, 12, 47-50.	2.1	42
107	High performance pMOS circuits with silicon-on-glass TFTs. Solid-State Electronics, 2010, 54, 299-302.	0.8	8
108	Reduction of Hot Carrier Effects in Corning Silicon-on-Glass TFTs. ECS Transactions, 2010, 33, 83-94.	0.3	0

#	Article	IF	CITATIONS
109	Low Voltage Driven CMOS Circuits Based on Silicon on Glass. ECS Transactions, 2010, 33, 391-398.	0.3	O
110	(Invited) Stabilities of TFTs under Bias-Stress. ECS Transactions, 2010, 33, 31-39.	0.3	6