
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poziotinib for Patients With <i>HER2</i> Exon 20 Mutant Non–Small-Cell Lung Cancer: Results From a Phase II Trial. Journal of Clinical Oncology, 2022, 40, 702-709.	1.6	53
2	Tumor Immunology and Immunotherapy of Non-Small-Cell Lung Cancer. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a037895.	6.2	24
3	The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell, 2022, 40, 36-52.e9.	16.8	101
4	Surgical approach does not influence changes in circulating immune cell populations following lung cancer resection. Lung Cancer, 2022, 164, 69-75.	2.0	2
5	Surgical outcomes after neoadjuvant nivolumab or nivolumab with ipilimumab in patients with non–small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1327-1337.	0.8	29
6	MEK inhibition invigorates chemoimmunotherapy by tumor mitophagy-induced CXCL10 expression. Cell Reports Medicine, 2022, 3, 100506.	6.5	0
7	Clinical Effectiveness And Safety Of Anti-PD-(L)1 Therapy Among Older Adults With Advanced Non-Small Cell Lung Cancer. Clinical Lung Cancer, 2022, , .	2.6	2
8	Combined IL-2, agonistic CD3 and 4-1BB stimulation preserve clonotype hierarchy in propagated non-small cell lung cancer tumor-infiltrating lymphocytes. , 2022, 10, e003082.		11
9	Regulation of ZEB1 Function and Molecular Associations in Tumor Progression and Metastasis. Cancers, 2022, 14, 1864.	3.7	22
10	Distinct Immune Gene Programs Associated with Host Tumor Immunity, Neoadjuvant Chemotherapy, and Chemoimmunotherapy in Resectable NSCLC. Clinical Cancer Research, 2022, 28, 2461-2473.	7.0	9
11	Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nature Communications, 2022, 13, 1970.	12.8	34
12	Immunogenomic intertumor heterogeneity across primary and metastatic sites in a patient with lung adenocarcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 172.	8.6	2
13	Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells, 2022, 11, 1484.	4.1	17
14	The microRNA-183/96/182 cluster inhibits lung cancer progression and metastasis by inducing an interleukin-2-mediated antitumor CD8 ⁺ cytotoxic T-cell response. Genes and Development, 2022, 36, 582-600.	5.9	9
15	Association of Driver Oncogene Variations With Outcomes in Patients With Locally Advanced Non–Small Cell Lung Cancer Treated With Chemoradiation and Consolidative Durvalumab. JAMA Network Open, 2022, 5, e2215589.	5.9	15
16	Poziotinib for EGFR exon 20-mutant NSCLC: Clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell, 2022, 40, 754-767.e6.	16.8	34
17	Female Gender Predicts Augmented Immune Infiltration in Lung Adenocarcinoma. Clinical Lung Cancer, 2021, 22, e415-e424.	2.6	10
18	A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. British Journal of Cancer, 2021, 124, 383-390.	6.4	54

#	Article	IF	CITATIONS
19	AXL Inhibition Induces DNA Damage and Replication Stress in Non–Small Cell Lung Cancer Cells and Promotes Sensitivity to ATR Inhibitors. Molecular Cancer Research, 2021, 19, 485-497.	3.4	32
20	Neoadjuvant Chemotherapy Increases Cytotoxic T Cell, Tissue Resident Memory T Cell, and B Cell Infiltration in Resectable NSCLC. Journal of Thoracic Oncology, 2021, 16, 127-139.	1.1	48
21	Dual Inhibition of MEK and AXL Targets Tumor Cell Heterogeneity and Prevents Resistant Outgrowth Mediated by the Epithelial-to-Mesenchymal Transition in NSCLC. Cancer Research, 2021, 81, 1398-1412.	0.9	16
22	Emerging biomarkers for neoadjuvant immune checkpoint inhibitors in operable non-small cell lung cancer. Translational Lung Cancer Research, 2021, 10, 590-606.	2.8	25
23	Development, characterization, and applications of multi-material stereolithography bioprinting. Scientific Reports, 2021, 11, 3171.	3.3	78
24	Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nature Medicine, 2021, 27, 504-514.	30.7	357
25	Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers, 2021, 13, 1250.	3.7	7
26	Controversies and challenges in the pathologic examination of lung resection specimens after neoadjuvant treatment. Lung Cancer, 2021, 154, 76-83.	2.0	16
27	CD8+ T cells inhibit metastasis and CXCL4 regulates its function. British Journal of Cancer, 2021, 125, 176-189.	6.4	21
28	Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Reports, 2021, 35, 109009.	6.4	18
29	A collagen glucosyltransferase drives lung adenocarcinoma progression in mice. Communications Biology, 2021, 4, 482.	4.4	16
30	Characterization of the Immune Landscape of EGFR-Mutant NSCLC Identifies CD73/Adenosine Pathway as a Potential Therapeutic Target. Journal of Thoracic Oncology, 2021, 16, 583-600.	1.1	62
31	Genotype-Specific Differences in Circulating Tumor DNA Levels in Advanced NSCLC. Journal of Thoracic Oncology, 2021, 16, 601-609.	1.1	40
32	Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53 mutant lung cancers. Nature Communications, 2021, 12, 2606.	12.8	41
33	Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing. Cancer Discovery, 2021, 11, 2506-2523.	9.4	68
34	p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. Science Advances, 2021, 7, .	10.3	15
35	Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2–Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. Journal of Thoracic Oncology, 2021, 16, 1821-1839.	1.1	34
36	Nodal immune flare mimics nodal disease progression following neoadjuvant immune checkpoint inhibitors in non-small cell lung cancer. Nature Communications, 2021, 12, 5045.	12.8	42

#	Article	IF	CITATIONS
37	Clinical Outcomes in Non–Small-Cell Lung Cancer Patients Treated With EGFR-Tyrosine Kinase Inhibitors and Other Targeted Therapies Based on Tumor Versus Plasma Genomic Profiling. JCO Precision Oncology, 2021, 5, 1241-1249.	3.0	11
38	Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. , 2021, 9, e002891.		107
39	Targeting CDK4 overcomes EMT-mediated tumor heterogeneity and therapeutic resistance in KRAS-mutant lung cancer. JCI Insight, 2021, 6, .	5.0	12
40	Deep learning-based prediction of the T cell receptor–antigen binding specificity. Nature Machine Intelligence, 2021, 3, 864-875.	16.0	99
41	A protumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. Journal of Clinical Investigation, 2021, 131, .	8.2	25
42	CD73 expression defines immune, molecular, and clinicopathological subgroups of lung adenocarcinoma. Cancer Immunology, Immunotherapy, 2021, 70, 1965-1976.	4.2	14
43	Targeting of CD40 and PD-L1 Pathways Inhibits Progression of Oral Premalignant Lesions in a Carcinogen-induced Model of Oral Squamous Cell Carcinoma. Cancer Prevention Research, 2021, 14, 313-324.	1.5	17
44	Cold and heterogeneous T cell repertoire is associated with copy number aberrations and loss of immune genes in small-cell lung cancer. Nature Communications, 2021, 12, 6655.	12.8	24
45	The histologic phenotype of lung cancers is associated with transcriptomic features rather than genomic characteristics. Nature Communications, 2021, 12, 7081.	12.8	16
46	Lymphovascular Invasion Is Associated With Mutational Burden and PD-L1 in Resected Lung Cancer. Annals of Thoracic Surgery, 2020, 109, 358-366.	1.3	9
47	Phase II Trial of Concurrent Atezolizumab With Chemoradiation for Unresectable NSCLC. Journal of Thoracic Oncology, 2020, 15, 248-257.	1.1	97
48	The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells, 2020, 9, 52.	4.1	56
49	MBIP (MAP3K12 binding inhibitory protein) drives NSCLC metastasis by JNK-dependent activation of MMPs. Oncogene, 2020, 39, 6719-6732.	5.9	12
50	IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene, 2020, 39, 5979-5994.	5.9	25
51	A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Science Translational Medicine, 2020, 12, .	12.4	101
52	Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nature Communications, 2020, 11, 4520.	12.8	218
53	Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biology, 2020, 21, 271.	8.8	36
54	Neutrophil expansion defines an immunoinhibitory peripheral and intratumoral inflammatory milieu in resected non-small cell lung cancer: a descriptive analysis of a prospectively immunoprofiled cohort. , 2020, 8, e000405.		33

#	Article	IF	CITATIONS
55	A Phase II Trial of Alisertib (MLN8237) in Salvage Malignant Mesothelioma. Oncologist, 2020, 25, e1457-e1463.	3.7	7
56	Peripheral cytokines are not influenced by the type of surgical approach for non-small cell lung cancer by four weeks postoperatively. Lung Cancer, 2020, 146, 303-309.	2.0	2
57	STING Pathway Expression Identifies NSCLC With an Immune-Responsive Phenotype. Journal of Thoracic Oncology, 2020, 15, 777-791.	1.1	94
58	PI4KIIIβ is a therapeutic target in chromosome 1q–amplified lung adenocarcinoma. Science Translational Medicine, 2020, 12, .	12.4	41
59	A Phase I/II Study of Neoadjuvant Cisplatin, Docetaxel, and Nintedanib for Resectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 3525-3536.	7.0	22
60	18F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1519-1534.	4.2	21
61	Phase I/II Trial of Immunotherapy With Durvalumab and Tremelimumab With Continuous or Intermittent MEK Inhibitor Selumetinib in NSCLC: Early Trial Report. Clinical Lung Cancer, 2020, 21, 384-388.	2.6	11
62	Programmed Death-Ligand 1 Heterogeneity and Its Impact on Benefit From Immune Checkpoint Inhibitors in NSCLC. Journal of Thoracic Oncology, 2020, 15, 1449-1459.	1.1	109
63	Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biology, 2020, 91-92, 8-18.	3.6	34
64	Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nature Communications, 2020, 11, 603.	12.8	140
65	KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. American Journal of Cancer Research, 2020, 10, 4464-4475.	1.4	5
66	ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer. Nature Communications, 2019, 10, 5125.	12.8	72
67	Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers, 2019, 11, 714.	3.7	79
68	PD-L1 Expression, Tumor Mutational Burden, and Cancer Gene Mutations Are Stronger Predictors of Benefit from Immune Checkpoint Blockade than HLA Class I Genotype in Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, 1021-1031.	1.1	79
69	Ntrk1 Promotes Resistance to PD-1 Checkpoint Blockade in Mesenchymal Kras/p53 Mutant Lung Cancer. Cancers, 2019, 11, 462.	3.7	20
70	A novel ex vivo tumor system identifies Src-mediated invasion and metastasis in mesenchymal tumor cells in non-small cell lung cancer. Scientific Reports, 2019, 9, 4819.	3.3	20
71	ZEB1 suppression sensitizes KRAS mutant cancers to MEK inhibition by an IL17RD-dependent mechanism. Science Translational Medicine, 2019, 11, .	12.4	42
72	Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer. Cancer Discovery, 2019, 9, 646-661.	9.4	555

#	Article	IF	CITATIONS
73	Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases. Clinical Cancer Research, 2018, 24, 2182-2193.	7.0	68
74	Prognostic Value of PD-L1 mRNA Sequencing Expression Profile in Non-Small Cell Lung Cancer. Annals of Thoracic Surgery, 2018, 105, 1621-1626.	1.3	5
75	Immunohistochemical and Image Analysis-Based Study Shows That Several Immune Checkpoints are Co-expressed in Non–Small Cell Lung Carcinoma Tumors. Journal of Thoracic Oncology, 2018, 13, 779-791.	1.1	53
76	Pan ancer survey of epithelial–mesenchymal transition markers across the Cancer Genome Atlas. Developmental Dynamics, 2018, 247, 555-564.	1.8	96
77	Overcoming resistance to anti-PD immunotherapy in a syngeneic mouse lung cancer model using locoregional virotherapy. Oncolmmunology, 2018, 7, e1376156.	4.6	14
78	Effect of neoadjuvant chemotherapy on the immune microenvironment in non–small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. , 2018, 6, 48.		126
79	TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nature Communications, 2018, 9, 2731.	12.8	88
80	CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery, 2018, 8, 1156-1175.	9.4	323
81	In vivo screening identifies CATAD2B as a metastasis driver in KRAS-driven lung cancer. Nature Communications, 2018, 9, 2732.	12.8	33
82	The fibrotic tumor stroma. Journal of Clinical Investigation, 2018, 128, 16-25.	8.2	189
83	The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. Journal of Clinical Investigation, 2018, 128, 1267-1282.	8.2	48
84	Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells. Cancer Immunology Research, 2017, 5, 319-329.	3.4	25
85	CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. Cancer Research, 2017, 77, 3870-3884.	0.9	163
86	Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Scientific Reports, 2017, 7, 13380.	3.3	208
87	TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Discovery, 2017, 7, 1088-1097.	9.4	160
88	Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nature Communications, 2017, 8, 199.	12.8	49
89	Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget, 2017, 8, 28575-28587.	1.8	157
90	Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. Journal of Clinical Investigation, 2017, 127, 3675-3688.	8.2	135

#	Article	IF	CITATIONS
91	The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Scientific Reports, 2016, 6, 18652.	3.3	62
92	Growth and metastasis of lung adenocarcinoma is potentiated by BMP4-mediated immunosuppression. Oncolmmunology, 2016, 5, e1234570.	4.6	23
93	The BATTLE-2 Study: A Biomarker-Integrated Targeted Therapy Study in Previously Treated Patients With Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2016, 34, 3638-3647.	1.6	140
94	A genetic cell context-dependent role for ZEB1 in lung cancer. Nature Communications, 2016, 7, 12231.	12.8	54
95	Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncology, The, 2016, 17, 1672-1682.	10.7	865
96	Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Medicine, 2016, 14, 168.	5.5	106
97	Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6955-6960.	7.1	120
98	Image Analysis–based Assessment of PD-L1 and Tumor-Associated Immune Cells Density Supports Distinct Intratumoral Microenvironment Groups in Non–small Cell Lung Carcinoma Patients. Clinical Cancer Research, 2016, 22, 6278-6289.	7.0	130
99	Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly(dimethylsiloxane). RSC Advances, 2016, 6, 8980-8991.	3.6	20
100	Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma. Molecular Cancer Research, 2016, 14, 287-295.	3.4	150
101	Epithelial–Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma. Clinical Cancer Research, 2016, 22, 3630-3642.	7.0	353
102	Epithelial–Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor–Mediated Apoptosis in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2016, 22, 1674-1686.	7.0	41
103	A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition. Clinical Cancer Research, 2016, 22, 609-620.	7.0	388
104	Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. Journal of Clinical Investigation, 2016, 127, 117-131.	8.2	75
105	The mutually regulatory loop of epithelial–mesenchymal transition and immunosuppression in cancer progression. Oncolmmunology, 2015, 4, e1002731.	4.6	24
106	Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications, 2014, 5, 5241.	12.8	780
107	Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3550-3555.	7.1	74
108	Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients. International Journal of Cancer, 2014, 134, 789-798.	5.1	27

#	Article	IF	CITATIONS
109	A HER 1-2 Punch: Dual EGFR Targeting Deals Resistance a Deadly Blow. Cancer Discovery, 2014, 4, 991-994.	9.4	13
110	Smoking, p53 Mutation, and Lung Cancer. Molecular Cancer Research, 2014, 12, 3-13.	3.4	205
111	ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. Journal of Clinical Investigation, 2014, 124, 2696-2708.	8.2	101
112	Through the open door: Preferential binding of dasatinib toÂthe active form of BCRâ€ABL unveiled by <i>in silico</i> experiments. Molecular Oncology, 2013, 7, 968-975.	4.6	28
113	Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a Target in <i>LKB1</i> -Mutant Lung Cancer. Cancer Discovery, 2013, 3, 870-879.	9.4	127
114	The role of epithelial–mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Management and Research, 2013, 5, 187.	1.9	117
115	Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma. PLoS ONE, 2013, 8, e67054.	2.5	42
116	Acquisition Of Compound BCR-ABL1 Alleles As A Mechanism Of Resistance To Ponatinib In Chronic Myeloid Leukemia. Blood, 2013, 122, 853-853.	1.4	0
117	A Synthetic Matrix with Independently Tunable Biochemistry and Mechanical Properties to Study Epithelial Morphogenesis and EMT in a Lung Adenocarcinoma Model. Cancer Research, 2012, 72, 6013-6023.	0.9	155
118	The rise and fall of gatekeeper mutations? The <i>BCRâ€ABL1</i> T315I paradigm. Cancer, 2012, 118, 293-299.	4.1	73
119	ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. Journal of Clinical Investigation, 2012, 122, 3170-3183.	8.2	135
120	Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells. PLoS ONE, 2012, 7, e34343.	2.5	30
121	Treatment of Non–Small-Cell Lung Cancer with Erlotinib or Gefitinib. New England Journal of Medicine, 2011, 364, 947-955.	27.0	375
122	<i>Map2k4</i> Functions as a Tumor Suppressor in Lung Adenocarcinoma and Inhibits Tumor Cell Invasion by Decreasing Peroxisome Proliferator-Activated Receptor γ2 Expression. Molecular and Cellular Biology, 2011, 31, 4270-4285.	2.3	63
123	miR-200 Inhibits Lung Adenocarcinoma Cell Invasion and Metastasis by Targeting <i>Flt1/VEGFR1</i> . Molecular Cancer Research, 2011, 9, 25-35.	3.4	166
124	Targets of the Tumor Suppressor <i>miR-200</i> in Regulation of the Epithelial–Mesenchymal Transition in Cancer. Cancer Research, 2011, 71, 7670-7682.	0.9	126
125	The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice. Journal of Clinical Investigation, 2011, 121, 1373-1385.	8.2	172
126	Expression Signatures of Metastatic Capacity in a Genetic Mouse Model of Lung Adenocarcinoma. PLoS ONE, 2009, 4, e5401.	2.5	65

#	ARTICLE	IF	CITATIONS
127	Distinct Biological Roles for the Notch Ligands Jagged-1 and Jagged-2. Journal of Biological Chemistry, 2009, 284, 17766-17774.	3.4	64
128	Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes and Development, 2009, 23, 2140-2151.	5.9	435
129	Mutational Analysis of Chronic Phase Chronic Myeloid Leukemia (CMLCP) Clones Reveals Heightened BCR-ABL1 Genetic Instability in Patients Failing Sequential Imatinib and Dasatinib Therapy Blood, 2008, 112, 2114-2114.	1.4	3
130	Mutational Analysis of Chronic Myeloid Leukemia (CML) Clones Reveals Heightened BCR-ABL1 Genetic Instability and Wild-Type BCR-ABL1 Exhaustion in Patients Failing Sequential Imatinib and Dasatinib Therapy Blood, 2007, 110, 1938-1938.	1.4	4
131	Mutations within BCR-ABL1 295–312 Define a Novel Region Associated with Poor Prognosis in Patients with Chronic Myelogenous Leukemia (CML) Resistant to Imatinib Blood, 2007, 110, 1936-1936.	1.4	0
132	Sequencing of Subcloned PCR Products Facilitates Earlier Detection of BCR-ABL1T315I Mutants Compared to Direct Sequencing of the ABL1 Kinase Domain Blood, 2007, 110, 1952-1952.	1.4	0
133	Multistep Regulation of Membrane Insertion of the Fusion Peptide of Semliki Forest Virus. Journal of Virology, 2004, 78, 3312-3318.	3.4	46
134	Purification and Crystallization Reveal Two Types of Interactions of the Fusion Protein Homotrimer of Semliki Forest Virus. Journal of Virology, 2004, 78, 3514-3523.	3.4	22
135	Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature, 2004, 427, 320-325.	27.8	332
136	Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallography. Cell, 2003, 114, 573-583.	28.9	101
137	The Fusion Peptide of Semliki Forest Virus Associates with Sterol-Rich Membrane Domains. Journal of Virology, 2002, 76, 3267-3275.	3.4	118
138	Molecular Dissection of the Semliki Forest Virus Homotrimer Reveals Two Functionally Distinct Regions of the Fusion Protein. Journal of Virology, 2002, 76, 1194-1205.	3.4	33
139	Ligand-induced Conformational Changes in the Apical Domain of the Chaperonin GroEL. Journal of Biological Chemistry, 1996, 271, 238-243.	3.4	20
140	Exposure of Hydrophobic Surfaces on the Chaperonin GroEL Oligomer by Protonation or Modification of His-401. Journal of Biological Chemistry, 1995, 270, 7335-7340.	3.4	18
141	Topology of the Na,K-ATPase. Journal of Biological Chemistry, 1995, 270, 8785-8796.	3.4	49