Attila Jancsó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8311901/publications.pdf

Version: 2024-02-01

56	999	18	30
papers	citations	h-index	g-index
56	56	56	1239
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tying Up a Loose End: On the Role of the Câ€Terminal CCHHRAG Fragment of the Metalloregulator CueR. ChemBioChem, 2022, 23, .	1.3	3
2	A study on the secondary structure of the metalloregulatory protein CueR: effect of pH, metal ions and DNA. European Biophysics Journal, 2021, 50, 491-500.	1.2	7
3	Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study, Molecules, 2021, 26, 271, A reference compound for Amml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.7	9
4	display="inline" id="d1e304" altimg="si117.svg"> <mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">199m</mml:mi></mml:mrow></mml:msup> Hg perturbed angular correlation of <mml:math altimg="si10.svg" display="inline" id="d1e312" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi> 3</mml:mi></mml:math> -rays spectroscopy. Nuclear Instruments	0.7	2
5	and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated A Comprehensive Study of the Ca ²⁺ Ion Binding of Fluorescently Labelled BAPTA Analogues. European Journal of Organic Chemistry, 2021, 2021, 5248-5261.	1.2	6
6	Synthesis and Fluorescence Mechanism of the Aminoimidazolone Analogues of the Green Fluorescent Protein: Towards Advanced Dyes with Enhanced Stokes Shift, Quantum Yield and Twoâ€Photon Absorption. European Journal of Organic Chemistry, 2021, 2021, 5649-5660.	1,2	9
7	Modulation of the catalytic activity of a metallonuclease by tagging with oligohistidine. Journal of Inorganic Biochemistry, 2020, 206, 111013.	1.5	5
8	Flexibility of the CueR Metal Site Probed by Instantaneous Change of Element and Oxidation State from Ag ^I to Cd ^{II} . Chemistry - A European Journal, 2020, 26, 7451-7457.	1.7	10
9	Câ€terminal Cysteines of CueR Act as Auxiliary Metal Site Ligands upon Hg II Binding—A Mechanism To Prevent Transcriptional Activation by Divalent Metal Ions?. Chemistry - A European Journal, 2019, 25, 15030-15035.	1.7	11
10	Hg ²⁺ and Cd ²⁺ binding of a bioinspired hexapeptide with two cysteine units constructed as a minimalistic metal ion sensing fluorescent probe. Dalton Transactions, 2019, 48, 8327-8339.	1.6	6
11	Synthesis and spectroscopic characterization of novel GFP chromophore analogues based on aminoimidazolone derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 161-170.	2.0	9
12	Frontispiece: Câ€terminal Cysteines of CueR Act as Auxiliary Metal Site Ligands upon Hg ^{II} Binding—A Mechanism To Prevent Transcriptional Activation by Divalent Metal Ions?. Chemistry - A European Journal, 2019, 25, .	1.7	0
13	A Constrained Tetrapeptide as a Model of Cu(l) Binding Sites Involving Cu ₄ S ₆ Clusters in Proteins. Inorganic Chemistry, 2018, 57, 5723-5731.	1.9	7
14	Oligopeptide models of the metal binding loop of the bacterial copper efflux regulator protein CueR as potential Cu(I) chelators. Inorganica Chimica Acta, 2018, 472, 192-198.	1.2	7
15	Interaction of Arsenous Acid with the Dithiol-Type Chelator British Anti-Lewisite (BAL): Structure and Stability of Species Formed in an Unexpectedly Complex System. Inorganic Chemistry, 2018, 57, 7191-7200.	1.9	9
16	Short oligopeptides with three cysteine residues as models of sulphur-rich Cu(<scp>i</scp>)- and Hg(<scp>ii</scp>)-binding sites in proteins. Metallomics, 2018, 10, 1232-1244.	1.0	12
17	Towards 31Mg- \hat{l}^2 -NMR resonance linewidths adequate for applications in magnesium chemistry. Hyperfine Interactions, 2017, 238, 1.	0.2	5
18	TDPAC and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -NMR applications in chemistry and biochemistry. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 064003.	1.4	19

#	Article	IF	CITATIONS
19	Nanosecond Dynamics at Protein Metal Sites: An Application of Perturbed Angular Correlation (PAC) of \hat{l}^3 -Rays Spectroscopy. Accounts of Chemical Research, 2017, 50, 2225-2232.	7.6	7
20	Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein. Protein Expression and Purification, 2016, 123, 90-96.	0.6	3
21	Cd(II) Capture Ability of an Immobilized, Fluorescent Hexapeptide. Bulletin of the Chemical Society of Japan, 2016, 89, 243-253.	2.0	3
22	Specificity of the Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol?. Angewandte Chemie - International Edition, 2015, 54, 15756-15761.	7.2	14
23	Specificity of the Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol?. Angewandte Chemie, 2015, 127, 15982-15987.	1.6	5
24	4 Organotins. Formation, Use, Speciation, and Toxicology. , 2015, , 111-152.		1
25	Zn ^{II} and Hg ^{II} binding to a designed peptide that accommodates different coordination geometries. Dalton Transactions, 2015, 44, 12576-12588.	1.6	26
26	Crystallization of transcriptional metalloregulator protein CueR in complex with Hg2+. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s280-s280.	0.0	0
27	Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide. Journal of Inorganic Biochemistry, 2013, 126, 96-103.	1.5	19
28	A minimalist chemical model of matrix metalloproteinases â€" Can small peptides mimic the more rigid metal binding sites of proteins?. Journal of Inorganic Biochemistry, 2013, 126, 61-69.	1.5	11
29	Mimics of small ribozymes utilizing a supramolecular scaffold. Dalton Transactions, 2012, 41, 3328.	1.6	15
30	On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria. Journal of Inorganic Biochemistry, 2012, 106, 10-18.	1.5	25
31	Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif. Metallomics, 2011, 3, 1331.	1.0	18
32	The role of terminal amino group and histidine at the fourth position in the metal ion binding of oligopeptides revisited: Copper(II) and nickel(II) complexes of glycyl-glycyl-glycyl-histamine and its N-Boc protected derivative. Journal of Inorganic Biochemistry, 2011, 105, 92-101.	1.5	26
33	Organotins. Formation, Use, Speciation, and Toxicology. Metal lons in Life Sciences, 2010, , 111-151.	1.0	16
34	N-terminal fragment of the anti-angiogenic human endostatin binds copper(II) with very high affinity. Journal of Inorganic Biochemistry, 2009, 103, 940-947.	1.5	31
35	Probing the Cu2+ and Zn2+ binding affinity of histidine-rich glycoprotein. Journal of Inorganic Biochemistry, 2009, 103, 1634-1643.	1.5	31
36	Efficient and selective hydrolysis of 4-nitrophenyl phosphate by a dinuclear copper(II) complex. Arkivoc, 2009, 2009, 217-224.	0.3	2

#	Article	IF	CITATIONS
37	Zn ²⁺ Complexes of Diâ€and Triâ€nucleating Azacrown Ligands as Baseâ€Moietyâ€Selective Cleaving Agents of RNA 3′,5′â€Phosphodiester Bonds: Binding to Guanine Base. ChemBioChem, 2008, 9, 1739-1748.	1.3	20
38	Copper(II), nickel(II) and zinc(II) complexes of N-acetyl-His-Pro-His-His-NH2: Equilibria, solution structure and enzyme mimicking. Journal of Inorganic Biochemistry, 2008, 102, 1438-1448.	1.5	33
39	Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Journal of Inorganic Biochemistry, 2008, 102, 1700-1710.	1.5	34
40	Approaching the minimal metal ion binding peptide for structural and functional metalloenzyme mimicking. Dalton Transactions, 2008, , 6987.	1.6	27
41	Base and sequence selective cleavage of RNA phosphodiester bonds by Zn(II) azacrown chelates. , 2008, , .		0
42	Hydrolysis of a mRNA 5′-cap model substrate, 5′,5′-ApppA by di- and trinuclear zinc(II) complexes of a polyamino-polyol ligand. Journal of Inorganic Biochemistry, 2005, 99, 1283-1293.	1.5	10
43	Iron(III)- and copper(II) complexes of an asymmetric, pentadentate salen-like ligand bearing a pendant carboxylate group. Journal of Inorganic Biochemistry, 2005, 99, 1480-1489.	1.5	15
44	Solution chemical properties and catecholase-like activity of the copper(ii)–Ac-His-His-Gly-His-OH system, a relevant functional model for copper containing oxidases. Dalton Transactions, 2005, , 3187.	1.6	49
45	Phosphodiester Cleavage of Ribonucleoside Monophosphates and Polyribonucleotides by Homo- and Heterodinuclear Metal Complexes of a Cyclohexane-Based Polyamino–Polyol Ligand. Chemistry - A European Journal, 2003, 9, 5404-5415.	1.7	26
46	Metal ion co-ordination of a tripodal imidazole-derivative and its tridentate constituent: equilibrium and structural studies. Dalton Transactions RSC, 2002, , 2601.	2.3	12
47	Crystal structure, solution properties and hydrolytic activity of an alkoxo-bridged dinuclear copper(ii) complex, as a ribonuclease model. Dalton Transactions RSC, 2002, , 1757.	2.3	70
48	Heterodinuclear Zinc(II)â^'Iron(III) Complexes and Dinuclear Zinc Complexes as Models for Zinc-Containing Phosphatases. European Journal of Inorganic Chemistry, 2002, 2002, 1400-1409.	1.0	51
49	Heterodinuclear Zinc(II)â^'Iron(III) Complexes and Dinuclear Zinc Complexes as Models for Zinc-Containing Phosphatases., 2002, 2002, 1400.		1
50	Potentiometric and spectroscopic studies on the dimethyltin(IV) complexes of 2-hydroxyhippuric acid. Journal of Inorganic Biochemistry, 2001, 83, 187-192.	1.5	18
51	Structure, Equilibrium and Ribonuclease Activity of Copper(II) and Zinc(II) Complexes Formed with a Dinucleating Bis-Imidazole Ligand. European Journal of Inorganic Chemistry, 2000, 2000, 1635-1644.	1.0	50
52	Equilibrium and solution structural study of the interaction of tri- and tetra-dentate polyimidazole ligands with transition metal ions â€. Dalton Transactions RSC, 2000, , 2679-2684.	2.3	19
53	Dimethyltin(IV) cation induced amide deprotonation of aspartic acid containing dipeptides â€. Dalton Transactions RSC, 2000, , 1941-1947.	2.3	24
54	Potentiometric and spectroscopic evidence for co-ordination of dimethyltin(IV) to phosphate groups of DNA fragments and related ligands. Journal of the Chemical Society Dalton Transactions, 1999, , 1587-1594.	1.1	67

Attila JancsÃ³

#	Article	IF	CITATIONS
55	Equilibrium and solution structural study of the proton, copper(II), nickel(II) and zinc(II) complexes of 1-(2-aminoethylamino)-1-deoxy-D-galactitol. Journal of the Chemical Society Dalton Transactions, 1997, , 2125-2130.	1.1	12
56	Extracting Experimental Information from Large Matrixes. 1. A New Algorithm for the Application of Matrix Rank Analysis. Journal of Physical Chemistry A, 1997, 101, 8013-8020.	1.1	72