List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sensors and Actuators B: Chemical, 2013, 181, 471-478.	4.0	110
2	Self-Powered Monitoring of Ammonia Using an MXene/TiO ₂ /Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator. ACS Sensors, 2022, 7, 312-321.	4.0	87
3	Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films. Sensors and Actuators B: Chemical, 2015, 219, 125-132.	4.0	77
4	Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films. Sensors and Actuators B: Chemical, 2013, 176, 38-45.	4.0	74
5	Aggregation Induced Emission Enhancement in Ionic Self-Assembled Aggregates of Benzimidazolium Based Cyclophane and Sodium Dodecylbenzenesulfonate. Organic Letters, 2013, 15, 3400-3403.	2.4	64
6	Sn O 2 thick films for room temperature gas sensing applications. Journal of Applied Physics, 2009, 106, .	1.1	63
7	Structural, optical and magnetic properties of Sm doped ZnO at dilute concentrations. RSC Advances, 2016, 6, 78122-78131.	1.7	62
8	Highly selective colorimetric sensor for Zn2+ based on hetarylazo derivative. Inorganic Chemistry Communication, 2008, 11, 626-629.	1.8	61
9	Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled <i>p</i> -Terphenylbenzimidazolium-Based Molecular Baskets. ACS Applied Materials & Interfaces, 2015, 7, 10491-10500.	4.0	58
10	Temperature dependent H2S and Cl2 sensing selectivity of Cr2O3 thin films. Sensors and Actuators B: Chemical, 2011, 157, 466-472.	4.0	53
11	Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sensors. Sensors and Actuators B: Chemical, 2014, 198, 164-172.	4.0	51
12	Multifractal analysis of dropâ€casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surface and Interface Analysis, 2014, 46, 393-398.	0.8	46
13	Multifractal characterization of water soluble copper phthalocyanine based films surfaces. Electronic Materials Letters, 2014, 10, 719-730.	1.0	46
14	Room temperature ppb level Cl2 detection and sensing mechanism of highly selective and sensitive phthalocyanine nanowires. Sensors and Actuators B: Chemical, 2014, 203, 17-24.	4.0	39
15	Improved Cl ₂ sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers. RSC Advances, 2017, 7, 25229-25236.	1.7	37
16	Dansyl conjugated tripodal AIEEgen for highly selective detection of 2,4,6-trinitrophenol in water and solid state. Sensors and Actuators B: Chemical, 2016, 231, 79-87.	4.0	36
17	Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor. Applied Surface Science, 2018, 427, 202-209.	3.1	36
18	Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation. Chemical Physics Letters, 2018, 693, 23-27.	1.2	32

#	Article	IF	CITATIONS
19	Reversible and fast responding ppb level Cl2 sensor based on noncovalent modified carbon nanotubes with Hexadecafluorinated copper phthalocyanine. Sensors and Actuators B: Chemical, 2018, 255, 87-99.	4.0	32
20	Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synthetic Metals, 2019, 258, 116223.	2.1	32
21	Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes. Journal of Applied Physics, 2015, 117, .	1.1	30
22	CNTs based improved chlorine sensor from non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated cobalt phthalocyanines. RSC Advances, 2017, 7, 49675-49683.	1.7	30
23	Bimetallic Implanted Plasmonic Photoanodes for TiO2 Sensitized Third Generation Solar Cells. Scientific Reports, 2020, 10, 7657.	1.6	30
24	Modification of SnO2 surface oxygen vacancies through Er doping for ultralow NO2 detection. Materials Research Bulletin, 2021, 133, 111051.	2.7	28
25	Phthalocyanine based nanowires and nanoflowers as highly sensitive room temperature Cl ₂ sensors. RSC Advances, 2014, 4, 15945.	1.7	27
26	Ag ion implanted TiO2 photoanodes for fabrication of highly efficient and economical plasmonic dye sensitized solar cells. Chemical Physics Letters, 2020, 740, 137070.	1.2	25
27	Room temperature highly sensitive chlorine sensor based on reduced graphene oxide anchored with substituted copper phthalocyanine. Sensors and Actuators B: Chemical, 2021, 327, 128925.	4.0	25
28	Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Advances, 2019, 9, 20375-20384.	1.7	24
29	Nanostructured Sb doped SnO2 thick films for room temperature NH3 sensing. Chemical Physics Letters, 2010, 492, 119-122.	1.2	22
30	Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceramics International, 2018, 44, 18484-18490.	2.3	22
31	Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticles. RSC Advances, 2016, 6, 48064-48071.	1.7	20
32	Ultrasensitive yttrium modified tin oxide thin film based sub-ppb level NO2 detector. Sensors and Actuators B: Chemical, 2021, 329, 129169.	4.0	19
33	Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor. Chemical Physics Letters, 2016, 658, 276-281.	1.2	18
34	Surfactant assisted growth of nanostructured tin oxide films for gas sensing applications. Electronic Materials Letters, 2011, 7, 303-308.	1.0	17
35	Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films. Applied Surface Science, 2011, 257, 2929-2934.	3.1	16
36	TiO ₂ nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light. Zeitschrift Fur Kristallographie - Crystalline Materials, 2021, 236, 239-250.	0.4	16

#	Article	IF	CITATIONS
37	Ni2+ enriched carbon nanotubes nanohybrids based non-platinum counter electrodes for dye sensitized solar cells. Solar Energy, 2021, 226, 31-39.	2.9	16
38	Synthesis and characterization of excited state intramolecular proton transfer based 2-hydroxylaryl imidazole fluorescent materials. Synthetic Metals, 2012, 162, 58-63.	2.1	14
39	Tailoring of the chlorine sensing properties of substituted metal phthalocyanines non-covalently anchored on single-walled carbon nanotubes. RSC Advances, 2018, 8, 32719-32730.	1.7	14
40	Ag implanted TiO2 nanoparticle/nanofibers composites for dye sensitized solar cells applications. Solar Energy, 2022, 241, 109-119.	2.9	14
41	Designing and synthesis of imidazole based hole transporting material for solid state dye sensitized solar cells. Synthetic Metals, 2015, 205, 92-97.	2.1	12
42	Optimization of Ni2+/Ni3+ ratio in reduced graphene oxide/nickel oxide nanohybrids for platinum free dye sensitized solar cells. Journal of Physics and Chemistry of Solids, 2018, 123, 191-197.	1.9	12
43	Electrospun PVP/TiO2 Nanofibers for Filtration and Possible Protection from Various Viruses like COVID-19. Technologies, 2021, 9, 89.	3.0	12
44	Plasmonic Engineering of TiO2 Photoanodes for Dye-Sensitized Solar Cells: A Review. Journal of Electronic Materials, 2022, 51, 4188-4206.	1.0	12
45	Diazonium chemistry for making highly selective and sensitive CNT-Neutral Red hybrid-based chemiresistive acetone sensors. Vacuum, 2018, 155, 656-661.	1.6	11
46	Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. Journal of Materials Science: Materials in Electronics, 2020, 31, 8446-8455.	1.1	11
47	Structural, optical, and electrical characterization of hot wall epitaxy grown 1-methoxy-8-hydroxy-9,10-anthraquinone films. Journal of Applied Physics, 2001, 89, 7866-7870.	1.1	9
48	Characterization of hot wall grown silver phthalocyanine films. Journal of Applied Physics, 2007, 102, 073502.	1.1	9
49	Synthesis and characterization of nanostructured 1,3-bis(1-anthracenylazomethine)benzene films for room temperature NH3 gas-sensing applications. Sensors and Actuators B: Chemical, 2010, 147, 122-127.	4.0	9
50	Synthesis and characterization of sol-gel derived Cr2O3 nanoparticles. AIP Conference Proceedings, 2012, , .	0.3	9
51	Dielectric spectroscopic studies of boron subphthalocyanine chloride thin films. Electronic Materials Letters, 2013, 9, 101-106.	1.0	9
52	Study of junction charge transport properties of boron subphthalocyanine chloride thin film. Electronic Materials Letters, 2015, 11, 118-126.	1.0	9
53	Room temperature ppb level detection of chlorine using peripherally alkoxy substituted phthalocyanine/SWCNTs based chemiresistive sensors. Sensors and Actuators B: Chemical, 2022, 350, 130870.	4.0	9
54	Mobility modulation in low carrier concentration organic semiconducting thin films by varying disorder parameters. Journal of Applied Physics, 2017, 121, .	1.1	8

#	Article	IF	CITATIONS
55	Optimized reduction of graphite oxide for highly exfoliated silver nanoparticles anchored graphene sheets for dye sensitized solar cell applications. Electrochimica Acta, 2018, 265, 131-139.	2.6	8
56	Characterization of thermally evaporated 1,8-diacetoxy-9,10-anthraquinone films. Thin Solid Films, 2001, 398-399, 82-86.	0.8	7
57	Anisotropic charge transport properties in boron sub phthalocyanine chloride thin films. Journal of Applied Physics, 2017, 121, 095501.	1.1	7
58	MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114589.	1.3	7
59	Effect of dilute concentrations of Sm on the temperatureâ€dependent electrical and dielectric properties of ZnO. Journal of the American Ceramic Society, 2018, 101, 4023-4037.	1.9	6
60	Solution processable transition metal oxide ultra-thin films as alternative electron transport and hole blocking layers in dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113385.	2.0	6
61	Characterization of 1,4-/1,8-dihydroxy-9,10-anthraquinone films. Thin Solid Films, 2001, 385, 36-42.	0.8	5
62	Electron beam evaporated tin oxide thin films for thermistor applications. Materials Today: Proceedings, 2020, 26, 3462-3465.	0.9	5
63	"Painted CNTâ€@Au nanoparticles: a nanohybrid electrocatalyst of direct methanol oxidation. Emergent Materials, 2021, 4, 515-524.	3.2	5
64	Substituted copper phthalocyanine/multiwalled carbon nanotubes hybrid material for Cl2 sensing application. , 2014, , .		4
65	Physicochemical properties of Tin (IV) oxide synthesized by different methods and from different precursors. Applied Nanoscience (Switzerland), 2022, 12, 1155-1168.	1.6	4
66	Characterization of hot wall epitaxy grown 1-(2-methoxy benzyloxy)-8-hydroxy-9,10-anthraquinone films. Thin Solid Films, 2002, 420-421, 392-397.	0.8	3
67	Synthesis and characterization of 1-phenyl-3-(4-phenyl-[1,2,3]triazol-1-yl)-4-styryl-azetidin-2-one films for light-emitting applications. Thin Solid Films, 2010, 519, 1501-1505.	0.8	3
68	Characterization Of Hot Wall Grown 9, 10-Dichloroanthracene Films For Light Emitting Applications. AIP Conference Proceedings, 2010, , .	0.3	3
69	CHARACTERIZATION OF DROP CASTED CuTsPc FILMS ON ITO SUBSTRATES. International Journal of Nanoscience, 2013, 12, 1350001.	0.4	3
70	Substituted zinc phthalocyanine based nanowires for room temperature ppb level Cl2 sensing application. AIP Conference Proceedings, 2014, , .	0.3	3
71	Structural, optical and electrical characterization of hot wall grown 9,10-dibromoanthracene films for light emitting applications. Electronic Materials Letters, 2014, 10, 199-204.	1.0	3
72	Kinetic response study in chemiresistive gas sensor based on carbon nanotube surface functionalized with substituted phthalocyanines. AIP Conference Proceedings, 2016, , .	0.3	3

#	Article	IF	CITATIONS
73	Substrate induced effects on structural, optical and electrical properties of lead (II)tetrakis (4-cumylphenoxy) phthalocyanine thin films. Materials Today: Proceedings, 2020, 26, 3386-3389.	0.9	3
74	Phase Variation of Ultrathin WO ₃ Electronâ€Transport Layer Prepared by Scalable Langmuir–Blodgett Technique to Boost Efficiency of Dye Sensitized Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
75	Enhanced H[sub 2]S response of Au modified Fe[sub 2]O[sub 3] thin films. , 2013, , .		2
76	Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques. AIP Conference Proceedings, 2016, , .	0.3	2
77	Up-converting rare earth phosphor yttrium doped TiO2 material for dye sensitized solar cells application. AIP Conference Proceedings, 2020, , .	0.3	2
78	Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films. , 2010, , .		1
79	Preparation and characterization of oxadiazole based electron transporting thin films. Electronic Materials Letters, 2012, 8, 429-434.	1.0	1
80	Lakshita – Mining and research hub at L5. Advances in Space Research, 2013, 52, 1063-1071.	1.2	1
81	Solution processed CuPc based nanowires for room temperature Cl[sub 2] gas sensing applications. , 2013, , .		1
82	CTAB capped silver nanoparticles for plasmonic dye-sensitized solar cell. AIP Conference Proceedings, 2014, , .	0.3	1
83	Tungsten disulfide nanoparticles anchored on reduced graphene oxide for dye sensitized solar cell applications. AIP Conference Proceedings, 2018, , .	0.3	1
84	Influence of erbium doping on electrical properties and thermal sensitivity of tin oxide based temperature sensor. AIP Conference Proceedings, 2020, , .	0.3	1
85	Phthalocyanine based 1D nanowires for device applications. , 2012, , .		Ο
86	Improvement of room temperature ppb level Cl[sub 2] sensing characteristics of copper phthalocyanine film. , 2013, , .		0
87	Growth of amino substituted anthracene thin films under non thermal equilibrium conditions. Electronic Materials Letters, 2014, 10, 929-934.	1.0	Ο
88	Educational Space Settlement: Mantavya. Astropolitics, 2015, 13, 88-99.	0.2	0
89	Room temperature ferromagnetism and luminescent behavior of Ni doped ZnO nanoparticles prepared by coprecipitation method. AIP Conference Proceedings, 2016, , .	0.3	0
90	Growth and characterization of macroscopic reduced graphene oxide paper for device application. AIP Conference Proceedings, 2016, , .	0.3	0

#	Article	IF	CITATIONS
91	Bisbenzimidazole based molecule as violet fluorescent material. AIP Conference Proceedings, 2018, , .	0.3	0
92	Sensing performance of rGO/phthalocyanine based hybrid at room temperature. AIP Conference Proceedings, 2019, , .	0.3	0
93	Growth of few layered molybdenum disulphide. AIP Conference Proceedings, 2019, , .	0.3	0
94	Efficient blue-violet emitting bisbenzimidazole based molecule. AIP Conference Proceedings, 2020, , .	0.3	0
95	Effect of TiO2 scatterer on photovoltaic performance of quantum dot solar cell. AIP Conference Proceedings, 2021, , .	0.3	0
96	Charge transport properties of single layer imidazole-based devices. AIP Conference Proceedings, 2021, , ,	0.3	0
97	Determination of van der Waals C3 coefficients for titanium carbide MXenes with alkali atoms. AIP Conference Proceedings, 2021, , .	0.3	0
98	Ambient-air fabrication with inorganic/polymer hole transport layer: Towards low cost perovskite solar cells. AIP Conference Proceedings, 2020, , .	0.3	0
99	Electrospun 1D TiO2 nanorods for enhancing the performance of dye sensitized solar cells. AIP Conference Proceedings, 2020, , .	0.3	0
100	Low temperature processable crystalline WO3 Langmuir-Blodgett ultra-thin film as blocking layer in solar cells application. AIP Conference Proceedings, 2020, , .	0.3	0