Peter D Wragg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8311579/publications.pdf

Version: 2024-02-01

39 papers 3,593 citations

236925 25 h-index 39 g-index

40 all docs

40 docs citations

40 times ranked

5653 citing authors

#	Article	IF	CITATIONS
1	Quantifying the environmental limits to fire spread in grassy ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	7
2	Revegetation to slow buckthorn reinvasion: strengths and limits of evaluating management techniques retrospectively. Restoration Ecology, $2021, 29, \ldots$	2.9	5
3	Microbial substrate stoichiometry governs nutrient effects on nitrogen cycling in grassland soils. Soil Biology and Biochemistry, 2021, 155, 108168.	8.8	35
4	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
5	Phenological niche overlap between invasive buckthorn (Rhamnus cathartica) and native woody species. Forest Ecology and Management, 2021, 498, 119568.	3.2	5
6	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
7	Increased light availability due to forestry mowing of invasive European buckthorn promotes its regeneration. Restoration Ecology, 2020, 28, 475-482.	2.9	5
8	Fosamine ammonium impacts on the targeted invasive shrub Rhamnus cathartica and non-target herbs. Invasive Plant Science and Management, 2020, 13, 210-215.	1.1	3
9	Phenology matters: Extended spring and autumn canopy cover increases biotic resistance of forests to invasion by common buckthorn (Rhamnus cathartica). Forest Ecology and Management, 2020, 464, 118067.	3.2	14
10	Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology and Biochemistry, 2020, 146, 107815.	8.8	58
11	More than eating dirt: a review of avian geophagy. African Zoology, 2019, 54, 1-19.	0.4	29
12	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
13	Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a longâ€ŧerm grassland experiment. Ecology Letters, 2019, 22, 593-604.	6.4	103
14	Nitrogen and Phosphorus Additions Alter the Abundance of Phosphorus-Solubilizing Bacteria and Phosphatase Activity in Grassland Soils. Frontiers in Environmental Science, 2019, 7, .	3.3	63
15	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7. 8	97
16	Forbs, grasses, and grassland fire behaviour. Journal of Ecology, 2018, 106, 1983-2001.	4.0	45
17	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42
18	Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology, 2018, 55, 2362-2373.	4.0	47

#	Article	IF	Citations
19	Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Science Advances, 2017, 3, e1700866.	10.3	50
20	Multiple nutrients control threatened grassland vegetation in eastern South Africa. South African Journal of Botany, 2017, 112, 225-236.	2.5	4
21	Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Global Change Biology, 2016, 22, 741-749.	9.5	77
22	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
23	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
24	Phenological responses of prairie plants vary among species and year in a threeâ€year experimental warming study. Ecosphere, 2015, 6, 1-15.	2.2	23
25	Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96, 99-112.	3.2	144
26	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
27	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
28	Responses to fire differ between <scp>S</scp> outh <scp>A</scp> frican and <scp>N</scp> orth <scp>A</scp> merican grassland communities. Journal of Vegetation Science, 2014, 25, 793-804.	2.2	44
29	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
30	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
31	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	6.4	165
32	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
33	DO TRADE-OFFS HAVE EXPLANATORY POWER FOR THE EVOLUTION OF ORGANISMAL INTERACTIONS?. Evolution; International Journal of Organic Evolution, 2012, 66, 1297-1307.	2.3	27
34	Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits. New Phytologist, 2011, 191, 1128-1140.	7.3	70
35	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
36	Vegetative traits predict grass species' invasiveness and the invasibility of restored grassland. African Journal of Range and Forage Science, 2009, 26, 59-68.	1.4	15

3

PETER D WRAGG

#	Article	IF	CITATIONS
37	Holocene book review: Grasses and grassland ecology. Holocene, 2009, 19, 1101-1102.	1.7	0
38	Studies in Cyperaceae in southern Africa 42: Pseudo-vivipary in South African Cyperaceae. South African Journal of Botany, 2009, 75, 165-171.	2.5	15
39	New evidence for bee-pollination systems in Aloe (Asphodelaceae: Aloideae), a predominantly bird-pollinated genus. South African Journal of Botany, 2009, 75, 675-681.	2.5	21