Anke Weidlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8311422/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Towards improved prosumer participation: Electricity trading in local markets. Energy, 2022, 239, 122445.	8.8	15
2	Understanding Power Market Dynamics by Reflecting Market Interrelations and Flexibility-Oriented Bidding Strategies. Energies, 2022, 15, 494.	3.1	11
3	Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways. Renewable and Sustainable Energy Reviews, 2022, 156, 111996.	16.4	24
4	Increasing the realism of electricity market modeling through market interrelations. , 2022, , .		2
5	An MILP model for evaluating the optimal operation and flexibility potential of end-users. Applied Energy, 2021, 282, 116183.	10.1	9
6	Prepared for regional self-supply? On the regional fit of electricity demand and supply in Germany. Energy Strategy Reviews, 2021, 34, 100609.	7.3	8
7	Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways. Sustainability, 2021, 13, 5217.	3.2	27
8	Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation – A German case study. Renewable Energy, 2021, 180, 245-257.	8.9	10
9	Exploring long-term strategies for the german energy transition - A review of multi-Sector energy scenarios. Renewable and Sustainable Energy Transition, 2021, 1, 100010.	2.9	9
10	Analysis of Avoided Transmission Through Decentralized Photovoltaic and Battery Storage Systems. IEEE Transactions on Sustainable Energy, 2020, 11, 1922-1929.	8.8	7
11	Tracing carbon dioxide emissions in the European electricity markets. , 2020, , .		2
12	How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany. Applied Energy, 2020, 280, 115947.	10.1	6
13	Profitability of photovoltaic and battery systems on municipal buildings. Renewable Energy, 2020, 153, 1163-1173.	8.9	8
14	Reducing Operational Costs of Offshore HVDC Energy Export Systems Through Optimized Maintenance. Energies, 2020, 13, 1146.	3.1	0
15	The cost of providing operational flexibility from distributed energy resources. Applied Energy, 2020, 279, 115784.	10.1	21
16	Operational Flexibility of Small-Scale Electricity-Coupled Heat Generating Units. Technology and Economics of Smart Grids and Sustainable Energy, 2019, 4, 1.	2.6	7
17	Forecasting cross-border power transmission capacities in Central Western Europe using artificial neural networks. Energy Informatics, 2019, 2, .	2.3	4
18	Principal Cross-Border Flow Patterns in the European Electricity Markets. , 2019, , .		3

ANKE WEIDLICH

#	Article	IF	CITATIONS
19	Effects of a Coal Phase-Out on Market Dynamics: Results from a Simulation Model for Germany. , 2019, , .		1
20	Bidding Strategies for Flexible and Inflexible Generation in a Power Market Simulation Model. , 2018, , .		6
21	Methodische Quantifizierung der Bereitstellungskosten flexibler Systemkomponenten im deutschen Stromsystem. Zeitschrift FA1⁄4r Energiewirtschaft, 2017, 41, 33-55.	0.2	3
22	Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads. Applied Energy, 2016, 169, 857-865.	10.1	83
23	Smart Houses in the Smart Grid: Developing an interactive network. IEEE Electrification Magazine, 2014, 2, 81-93.	1.8	51
24	Decentralized Intelligence in Energy Efficient Power Systems. Energy Systems, 2012, , 467-486.	0.5	3
25	Energy-Efficient Computing and Networking. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2011, , .	0.3	4
26	Monitoring and Control for Energy Efficiency in the Smart House. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2011, , 197-207.	0.3	13
27	An agent-based analysis of the German electricity market with transmission capacity constraints. Energy Policy, 2009, 37, 4132-4144.	8.8	56
28	Smart houses for a smart grid. , 2009, , .		37
29	A critical survey of agent-based wholesale electricity market models. Energy Economics, 2008, 30, 1728-1759.	12.1	256
30	Analyzing interrelated markets in the electricity sector — The case of wholesale power trading in Germany. , 2008, , .		11
31	Agent-Based Simulations for Electricity Market Regulation Advice: Procedures and an Example. Jahrbucher Fur Nationalokonomie Und Statistik, 2008, 228, 149-172.	0.7	5
32	Studying the effects of CO2 emissions trading on the electricity market: A multi-agent-based approach. , 2008, , 91-101.		9
33	Simulating the dynamics in two-settlement electricity markets via an agent-based approach. International Journal of Management Science and Engineering Management, 2006, 1, 83-97.	3.1	33
34	Emissions trading and innovation in the German electricity industry — impact of possible design options for an emissions trading scheme on innovation strategies in the German electricity industry. , 2006, , 39-51.		7
35	Agent-Based Simulations for Electricity Market Regulation Advice: Procedures and an Example. SSRN Electronic Journal, 0, , .	0.4	1