Wolfgang Walther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8310957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suicide nanoplasmids coding for ribosome-inactivating proteins. European Journal of Pharmaceutical Sciences, 2022, 170, 106107.	1.9	4
2	Realâ€world evidence for preventive effects of statins on cancer incidence: A transâ€Atlantic analysis. Clinical and Translational Medicine, 2022, 12, e726.	1.7	15
3	S100A4 Is a Strong Negative Prognostic Marker and Potential Therapeutic Target in Adenocarcinoma of the Stomach and Esophagus. Cells, 2022, 11, 1056.	1.8	4
4	Inhibition of MACC1-Induced Metastasis in Esophageal and Gastric Adenocarcinomas. Cancers, 2022, 14, 1773.	1.7	4
5	Combination of Wnt/β-Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers, 2022, 14, 37.	1.7	7
6	Calcium-binding protein S100P is a new target gene of MACC1, drives colorectal cancer metastasis and serves as a prognostic biomarker. British Journal of Cancer, 2022, 127, 675-685.	2.9	8
7	A Brief Introduction to Current Cancer Gene Therapy. Methods in Molecular Biology, 2022, , 1-21.	0.4	3
8	Capillary Gel Electrophoresis (CGE) for Quality Control of Plasmid DNA in Gene Therapy: Quality Control of 20 Years Stored GMP-Grade Plasmid DNA. Methods in Molecular Biology, 2022, , 317-328.	0.4	2
9	Claudin-Targeted Suicide Gene Therapy for Claudin-Overexpressing Tumor Cells by Using Modified Clostridium perfringens Enterotoxin (CPE). Methods in Molecular Biology, 2022, , 173-188.	0.4	2
10	Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia, 2021, 23, 21-35.	2.3	32
11	Real-Time Cell Migration Monitoring to Analyze Drug Synergism in the Scratch Assay Using the IncuCyte System. Methods in Molecular Biology, 2021, 2294, 133-142.	0.4	7
12	Patient-Derived Xenografts from Solid Tumors (PDX) for Models of Metastasis. Methods in Molecular Biology, 2021, 2294, 43-58.	0.4	1
13	Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer. Cancers, 2021, 13, 978.	1.7	4
14	The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Oncogene, 2021, 40, 5286-5301.	2.6	9
15	Effective Oncoleaking Treatment of Pancreatic Cancer by Claudin-Targeted Suicide Gene Therapy with Clostridium perfringens Enterotoxin (CPE). Cancers, 2021, 13, 4393.	1.7	6
16	MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer. Cellular and Molecular Life Sciences, 2021, 78, 3525-3542.	2.4	12
17	Peritoneal metastasis of colorectal cancer (pmCRC): identification of predictive molecular signatures by a novel preclinical platform of matching pmCRC PDX/PD3D models. Molecular Cancer, 2021, 20, 129.	7.9	6
18	Decoding and targeting the molecular basis of MACC1-driven metastatic spread: Lessons from big data mining and clinical-experimental approaches. Seminars in Cancer Biology, 2020, 60, 365-379.	4.3	24

#	Article	IF	CITATIONS
19	Targeting claudinâ€overexpressing thyroid and lung cancer by modified <i>ClostridiumÂperfringens</i> enterotoxin. Molecular Oncology, 2020, 14, 261-276.	2.1	17
20	In-vitro and in-vivo investigations into the carbene-gold anticancer drug candidates NHC*-Au-SCSNMe2 and NHC*-Au-S-GLUC against advanced prostate cancer PC3. Anti-Cancer Drugs, 2020, 31, 672-683.	0.7	12
21	Small Ones to Fight a Big Problem—Intervention of Cancer Metastasis by Small Molecules. Cancers, 2020, 12, 1454.	1.7	5
22	Restoring Treatment Response in Colorectal Cancer Cells by Targeting MACC1-Dependent ABCB1 Expression in Combination Therapy. Frontiers in Oncology, 2020, 10, 599.	1.3	12
23	Targeted suicide gene transfections reveal promising results in nu/nu mice with aggressive neuroblastoma. Journal of Controlled Release, 2018, 275, 208-216.	4.8	12
24	Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Molecular Therapy, 2018, 26, 1137-1153.	3.7	53
25	Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO trial. BMC Cancer, 2018, 18, 297.	1.1	79
26	In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which are Apically Accessible Due to Tight Junction Derangement. Journal of Infectious Diseases, 2018, 217, 147-157.	1.9	46
27	Mechanisms of Targeting the MDM2-p53-FOXM1 Axis in Well-Differentiated Intestinal Neuroendocrine Tumors. Neuroendocrinology, 2018, 107, 1-23.	1.2	5
28	MACC1—the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer and Metastasis Reviews, 2018, 37, 805-820.	2.7	58
29	Pancreatic cancer models for translational research. , 2017, 173, 146-158.		26
30	Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer, 2017, 17, 129.	1.1	53
31	Choosing wisely – Preclinical test models in the era of precision medicine. Cancer Treatment Reviews, 2017, 55, 36-45.	3.4	37
32	MACC1 regulates Fas mediated apoptosis through STAT1/3 – Mcl-1 signaling in solid cancers. Cancer Letters, 2017, 403, 231-245.	3.2	25
33	Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biology, 2017, 15, e2000784.	2.6	70
34	In Vitro and In Vivo Investigations into the Carbene Gold Chloride and Thioglucoside Anticancer Drug Candidates NHC-AuCl and NHC-AuSR. Letters in Drug Design and Discovery, 2016, 14, 125-134.	0.4	33
35	S100A4 in Cancer Metastasis: Wnt Signaling-Driven Interventions for Metastasis Restriction. Cancers, 2016, 8, 59.	1.7	70
36	Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy. Recent Results in Cancer Research, 2016, 209, 95-110.	1.8	13

WOLFGANG WALTHER

#	Article	IF	CITATIONS
37	Impact of anti-PEG IgM antibodies on the pharmacokinetics of pegylated asparaginase preparations in mice. European Journal of Pharmaceutical Sciences, 2016, 91, 122-130.	1.9	30
38	Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resistance Updates, 2016, 26, 10-27.	6.5	30
39	Vectors and strategies for nonviral cancer gene therapy. Expert Opinion on Biological Therapy, 2016, 16, 443-461.	1.4	84
40	Chemosensitization by diverging modulation by short-term and long-term TNF-α action on ABCB1 expression and NF-κB signaling in colon cancer. International Journal of Oncology, 2015, 47, 2276-2285.	1.4	21
41	Oncoleaking: Use of the Pore-Forming Clostridium perfringens Enterotoxin (CPE) for Suicide Gene Therapy. Methods in Molecular Biology, 2015, 1317, 69-85.	0.4	5
42	Preclinical study on combined chemo―and nonviral gene therapy for sensitization of melanoma using a human TNFâ€alpha expressing MIDGE DNA vector. Molecular Oncology, 2014, 8, 609-619.	2.1	13
43	In Vitro and In Vivo Investigations into the Carbene Copper Bromide Anticancer Drug Candidate WBC4. Letters in Drug Design and Discovery, 2014, 11, 825-832.	0.4	16
44	A Seven-Year Storage Report of Good Manufacturing Practice–Grade Naked Plasmid DNA: Stability, Topology, and <i>In Vitro/In Vivo</i> Functional Analysis. Human Gene Therapy Clinical Development, 2013, 24, 147-153.	3.2	16
45	Performance of High Quality Minicircle DNA for In Vitro and In Vivo Gene Transfer. Molecular Biotechnology, 2013, 53, 80-89.	1.3	54
46	Current status of gene therapy for cancer. Current Opinion in Oncology, 2013, 25, 659-664.	1.1	53
47	HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model. Oncolmmunology, 2012, 1, 1537-1545.	2.1	30
48	In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clinical and Experimental Metastasis, 2012, 29, 573-583.	1.7	47
49	Intratumoral Dispersion, Retention, Systemic Biodistribution, and Clearance of a Small-Size Tumor Necrosis Factor-1±-Expressing MIDGE Vector After Nonviralin VivoJet-Injection Gene Transfer. Human Gene Therapy Methods, 2012, 23, 264-270.	2.1	3
50	Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer. Journal of the National Cancer Institute, 2011, 103, 1018-1036.	3.0	192
51	Intervening in β-Catenin Signaling by Sulindac Inhibits S100A4-Dependent Colon Cancer Metastasis. Neoplasia, 2011, 13, 131-IN8.	2.3	81
52	S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells. Molecular Biology of the Cell, 2011, 22, 3344-3354.	0.9	106
53	MACC1 $\hat{a} \in \hat{a}$ more than metastasis? Facts and predictions about a novel gene. Journal of Molecular Medicine, 2010, 88, 11-18.	1.7	63
54	Activation of the CMV-IE Promoter by Hyperthermia In Vitro and In Vivo: Biphasic Heat Induction of Cytosine Deaminase Suicide Gene Expression. Molecular Biotechnology, 2010, 46, 197-205.	1.3	6

WOLFGANG WALTHER

#	Article	IF	CITATIONS
55	Identification of Y-Box Binding Protein 1 As a Core Regulator of MEK/ERK Pathway-Dependent Gene Signatures in Colorectal Cancer Cells. PLoS Genetics, 2010, 6, e1001231.	1.5	80
56	Jet-Injection of Short Hairpin RNA-Encoding Vectors into Tumor Cells. Methods in Molecular Biology, 2010, 629, 121-137.	0.4	5
57	MACC1 controls Met: What a difference an Sp1 site makes. Cell Cycle, 2009, 8, 2467-2469.	1.3	84
58	MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 2009, 15, 59-67.	15.2	431
59	Heat-responsive gene expression for gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 641-649.	6.6	35
60	Nonviral Jet-Injection Technology for Intratumoral In Vivo Gene Transfer of Naked DNA. Methods in Molecular Biology, 2009, 542, 195-208.	0.4	5
61	Novel Jet-Injection Technology for Nonviral Intratumoral Gene Transfer in Patients with Melanoma and Breast Cancer. Clinical Cancer Research, 2008, 14, 7545-7553.	3.2	51
62	Complete In Vivo Reversal of the Multidrug Resistance Phenotype by Jet-injection of Anti-MDR1 Short Hairpin RNA-encoding Plasmid DNA. Molecular Therapy, 2008, 16, 178-186.	3.7	60
63	Heat-inducible in vivo gene therapy of colon carcinoma by human mdr1 promoter–regulated tumor necrosis factor-α expression. Molecular Cancer Therapeutics, 2007, 6, 236-243.	1.9	19
64	Biological Background. , 2007, , 3-18.		0
65	Local Gene Therapy for Cancer. , 2007, , 181-196.		2
66	Reversal of ABC Transporter-Dependent Multidrug Resistance in Cancer. American Journal of Cancer, 2006, 5, 285-297.	0.4	12
67	The Metastasis-Associated Gene S100A4 Is a Novel Target of β-catenin/T-cell Factor Signaling in Colon Cancer. Gastroenterology, 2006, 131, 1486-1500.	0.6	196
68	Needleless Jet Injection of Naked DNA for Nonviral in vivo Gene Transfer. , 2006, , 133-143.		0
69	YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene. Oncogene, 2005, 24, 3606-3618.	2.6	51
70	Use of the nuclease inhibitor aurintricarboxylic acid (ATA) for improved non-viral intratumoralin vivo gene transfer by jet-injection. Journal of Gene Medicine, 2005, 7, 477-485.	1.4	35
71	Nonviral Jet-Injection Gene Transfer for Efficient in Vivo Cytosine Deaminase Suicide Gene Therapy of Colon Carcinoma. Molecular Therapy, 2005, 12, 1176-1184.	3.7	19
72	Low-Volume Jet Injection for Efficient Nonviral In Vivo Gene Transfer. Molecular Biotechnology, 2004, 28, 121-128.	1.3	17

WOLFGANG WALTHER

#	Article	IF	CITATIONS
73	Stability analysis for long-term storage of naked DNA: impact on nonviral in vivo gene transfer. Analytical Biochemistry, 2003, 318, 230-235.	1.1	53
74	Lipoplexes with alkylphospholipid as new helper lipid for efficient in vitro and in vivo gene transfer in tumor therapy. Cancer Gene Therapy, 2003, 10, 302-311.	2.2	11
75	Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Human Molecular Genetics, 2003, 12, 3207-3214.	1.4	67
76	YB-1 as a Cell Cycle-regulated Transcription Factor Facilitating Cyclin A and Cyclin B1 Gene Expression. Journal of Biological Chemistry, 2003, 278, 27988-27996.	1.6	184
77	Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells. International Journal of Cancer, 2002, 97, 751-760.	2.3	32
78	Use of the humanMDR1 promoter for heat-inducible expression of therapeutic genes. International Journal of Cancer, 2002, 98, 291-296.	2.3	23
79	Intratumoral Low-Volume Jet-Injection for Efficient Nonviral Gene Transfer. Molecular Biotechnology, 2002, 21, 105-116.	1.3	48
80	Hyperthermia-induced Nuclear Translocation of Transcription Factor YB-1 Leads to Enhanced Expression of Multidrug Resistance-related ABC Transporters. Journal of Biological Chemistry, 2001, 276, 28562-28569.	1.6	123
81	In Vivo Gene Transfer by Low-Volume Jet Injection. Analytical Biochemistry, 2000, 282, 262-265.	1.1	41
82	mdr1 promoter-driven tumor necrosis factor-α expression for a chemotherapy-controllable combined in vivo gene therapy and chemotherapy of tumors. Cancer Gene Therapy, 2000, 7, 893-900.	2.2	32
83	High-Copy cDNA Amplification of Minimal Total RNA Quantities for Gene Expression Analyses. Molecular Biotechnology, 2000, 14, 165-172.	1.3	6
84	Cloning and Initial Analysis of the Human Multidrug Resistance-Related MVP/LRP Gene Promoter. Biochemical and Biophysical Research Communications, 2000, 278, 125-133.	1.0	37
85	Viral Vectors for Gene Transfer. Drugs, 2000, 60, 249-271.	4.9	364
86	Therapeutic Genes for Cancer Gene Therapy. Molecular Biotechnology, 1999, 13, 21-28.	1.3	21
87	Hyperthermia for treatment of rectal cancer: Evaluation for induction of multidrug resistance gene (mdr1) expression. , 1999, 80, 5-12.		18
88	Cytokine-mediated reversal of multidrug resistance. , 1998, 27, 271-282.		13
89	Large and Small Scale RNA Preparations from Eukaryotic Cells. , 1998, 86, 7-14.		2
90	Tumor Necrosis factor-Â and Expression of the Multidrug Resistance-Associated Genes LRP and MRP. Journal of the National Cancer Institute, 1997, 89, 807-813.	3.0	61

#	Article	IF	CITATIONS
91	Development and characterisation of novel human multidrug resistant mammary carcinoma linesin vitro andin vivo. , 1997, 72, 885-891.		39
92	Vincristine induction of mutant and wild-type human multidrug-resistance promoters is cell-type-specific and dose-dependent. Journal of Cancer Research and Clinical Oncology, 1996, 122, 275-282.	1.2	28
93	Targeted vectors for gene therapy of cancer and retroviral infections. Molecular Biotechnology, 1996, 6, 267-286.	1.3	7
94	Reversal of Multidrug Resistance by Transduction of Cytokine Genes Into Human Colon Carcinoma Cells. Journal of the National Cancer Institute, 1996, 88, 1383-1392.	3.0	63
95	Gene transfer of human TNFα into glioblastoma cells permits modulation ofmdr1 expression and potentiation of chemosensitivity. International Journal of Cancer, 1995, 61, 832-839.	2.3	30
96	Influence of cytokines onmdr1 expression in human colon carcinoma cell lines: Increased cytoxicity of MDR relevant drugs. Journal of Cancer Research and Clinical Oncology, 1994, 120, 471-478.	1.2	50
97	Retrovirus-mediated gene transfer in cancer therapy. , 1994, 63, 323-347.		28
98	In vivo investigations into the carbene gold anticancer drug candidates NHC*-Au-SCN and NHC*-Au-Scyclo. Trends in Cancer Research, 0, 13, 63.	1.6	5
99	Minicircle-Based Vectors for Nonviral Gene Therapy:In VitroCharacterization andIn VivoApplication. , 0, , 177-188.		0