
Ophelie Fovet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8310403/publications.pdf Version: 2024-02-01

Odhelle Fovet

#	Article	IF	CITATIONS
1	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	6.5	184
2	Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 2014, 50, 7445-7469.	4.2	170
3	Unexpected spatial stability of water chemistry in headwater stream networks. Ecology Letters, 2018, 21, 296-308.	6.4	149
4	OZCAR: The French Network of Critical Zone Observatories. Vadose Zone Journal, 2018, 17, 1-24.	2.2	126
5	Trends and seasonality of river nutrients in agricultural catchments: 18 years of weekly citizen science in France. Science of the Total Environment, 2018, 624, 845-858.	8.0	102
6	Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties. Science of the Total Environment, 2017, 598, 421-431.	8.0	73
7	Transit time distributions, legacy contamination and variability in biogeochemical 1/f ^α scaling: how are hydrological response dynamics linked to water quality at the catchment scale?. Hydrological Processes, 2015, 29, 5241-5256.	2.6	72
8	Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models. Hydrology and Earth System Sciences, 2015, 19, 105-123.	4.9	55
9	Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data. Journal of Hydrology, 2018, 559, 282-293.	5.4	53
10	Integrated climate-chemical indicators of diffuse pollution from land to water. Scientific Reports, 2018, 8, 944.	3.3	49
11	The role of mobilisation and delivery processes on contrasting dissolved nitrogen and phosphorus exports in groundwater fed catchments. Science of the Total Environment, 2017, 599-600, 1275-1287.	8.0	44
12	Predicting Nutrient Incontinence in the Anthropocene at Watershed Scales. Frontiers in Environmental Science, 2020, 7, .	3.3	39
13	Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge. Water Resources Research, 2017, 53, 7590-7606.	4.2	38
14	Using long time series of agricultural-derived nitrates for estimating catchment transit times. Journal of Hydrology, 2015, 522, 603-617.	5.4	35
15	Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warping. Water Resources Research, 2015, 51, 8868-8882.	4.2	34
16	Intermittent rivers and ephemeral streams: Perspectives for critical zone science and research on socioâ€ecosystems. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1523.	6.5	31
17	Nitrate removal and young stream water fractions at the catchment scale. Hydrological Processes, 2020, 34, 2725-2738.	2.6	30
18	Distribution of Landscape Units Within Catchments Influences Nutrient Export Dynamics. Frontiers in Environmental Science, 2019, 7, .	3.3	28

Ophelie Fovet

#	Article	IF	CITATIONS
19	Long-term nitrogen retention and transit time distribution in agricultural catchments in western France. Environmental Research Letters, 2020, 15, 115011.	5.2	27
20	Dryâ€season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwaterâ€dominated agricultural watershed. Water Resources Research, 2015, 51, 7860-7877.	4.2	25
21	Modelling periphyton in irrigation canals. Ecological Modelling, 2010, 221, 1153-1161.	2.5	22
22	A MODEL FOR FIXED ALGAE MANAGEMENT IN OPEN CHANNELS USING FLUSHING FLOWS. River Research and Applications, 2012, 28, 960-972.	1.7	21
23	AgrHyS: An Observatory of Response Times in Agroâ€Hydro Systems. Vadose Zone Journal, 2018, 17, 1-16.	2.2	19
24	Contrasting suspended sediment export in two small agricultural catchments: Crossâ€influence of hydrological behaviour and landscape degradation or stream bank management. Land Degradation and Development, 2018, 29, 1385-1396.	3.9	15
25	Multitemporal Relationships Between the Hydroclimate and Exports of Carbon, Nitrogen, and Phosphorus in a Small Agricultural Watershed. Water Resources Research, 2020, 56, e2019WR026323.	4.2	13
26	Spatio-temporal controls of C–N–P dynamics across headwater catchments of a temperate agricultural region from public data analysis. Hydrology and Earth System Sciences, 2021, 25, 2491-2511.	4.9	12
27	Dynamics of dissolved organic matter in headwaters: comparison of headwater streams with contrasting DOM and nutrient composition. Aquatic Sciences, 2020, 82, 1.	1.5	11
28	Influence of dams on river waterâ€quality signatures at event and seasonal scales: The Sélune River (France) case study. River Research and Applications, 2020, 36, 1267-1278.	1.7	9
29	Recharge processes and vertical transfer investigated through long-term monitoring of dissolved gases in shallow groundwater. Journal of Hydrology, 2018, 560, 275-288.	5.4	8
30	Adaptive control of algae detachment in regulated canal networks. Journal of Hydroinformatics, 2013, 15, 321-334.	2.4	7
31	Is a simple model based on two mixing reservoirs able to reproduce the intra-annual dynamics of DOC and NO3 stream concentrations in an agricultural headwater catchment?. Science of the Total Environment, 2021, 794, 148715.	8.0	6
32	Evolution of scientific questions over 50 years in the Kervidy-Naizin catchment: from catchment hydrology to integrated studies of biogeochemical cycles and agroecosystems in a rural landscape. Cuadernos De Investigacion Geografica, 2018, 44, 535-555.	1.1	6
33	Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream. Hydrology and Earth System Sciences, 2022, 26, 1459-1479.	4.9	6
34	Turbidity management during flushing-flows: A model for open-loop control. Advances in Water Resources, 2012, 39, 7-17.	3.8	5
35	Adaptive control of algae detachment in regulated canal networks. , 2011, , .		3

36 Modeling and control of algae detachment in regulated canal networks. , 2010, , .

#	Article	IF	CITATIONS
37	Managing Invasive Algae with Flushing Flows: New Perspectives for Canal Control. , 2012, , .		1
38	Valuing knowledge on temporal dynamics from long-term monitored basins for neighbouring sites. Proceedings of the International Association of Hydrological Sciences, 0, 366, 179-180.	1.0	0