
Christoph Schick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristic Length of Dynamic Glass Transition nearTgfor a Wide Assortment of Glass-Forming Substances. Journal of Physical Chemistry B, 2000, 104, 2460-2466.	1.2	339
2	The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. European Polymer Journal, 2007, 43, 3113-3127.	2.6	334
3	Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochimica Acta, 2010, 505, 1-13.	1.2	301
4	Differential scanning calorimetry (DSC) of semicrystalline polymers. Analytical and Bioanalytical Chemistry, 2009, 395, 1589-1611.	1.9	297
5	Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer, 2004, 45, 3755-3763.	1.8	262
6	Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy and Environmental Science, 2013, 6, 818.	15.6	248
7	Scanning microcalorimetry at high cooling rate. Thermochimica Acta, 2003, 403, 55-63.	1.2	242
8	Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer, 2010, 51, 4639-4662.	1.8	237
9	Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support. Journal of Chemical & Engineering Data, 2013, 58, 2699-2716.	1.0	236
10	Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Computational Materials, 2019, 5, .	3.5	234
11	High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy and Environmental Science, 2011, 4, 4522.	15.6	229
12	Kinetics of nucleation and crystallization in poly(É›-caprolactone) (PCL). Polymer, 2011, 52, 1983-1997.	1.8	224
13	Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer, 2016, 91, 239-263.	1.8	224
14	Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1MKâ^•s. Review of Scientific Instruments, 2007, 78, 073902.	0.6	211
15	Glassy Dynamics and Glass Transition in Nanometric Thin Layers of Polystyrene. Macromolecules, 2010, 43, 9937-9944.	2.2	203
16	Liquid Organic Hydrogen Carriers: Thermophysical and Thermochemical Studies of Benzyl- and Dibenzyl-toluene Derivatives. Industrial & Engineering Chemistry Research, 2015, 54, 7967-7976.	1.8	196
17	Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochimica Acta, 2010, 505, 14-21.	1.2	185
18	Scanning Nanocalorimetry at High Cooling Rate of Isotactic Polypropylene. Macromolecules, 2006, 39, 2562-2567.	2.2	174

#	Article	IF	CITATIONS
19	Retarded Crystallization in Polyamide/Layered Silicates Nanocomposites caused by an Immobilized Interphase. Macromolecules, 2010, 43, 1480-1487.	2.2	165
20	Differential AC-chip calorimeter for glass transition measurements in ultrathin films. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2996-3005.	2.4	163
21	Making Sense of Enthalpy of Vaporization Trends for Ionic Liquids: New Experimental and Simulation Data Show a Simple Linear Relationship and Help Reconcile Previous Data. Journal of Physical Chemistry B, 2013, 117, 6473-6486.	1.2	158
22	Modulated differential scanning calorimetry in the glass transition region. Thermochimica Acta, 1995, 266, 97-111.	1.2	153
23	Isothermal Nanocalorimetry of Isotactic Polypropylene. Macromolecules, 2007, 40, 9026-9031.	2.2	150
24	Non-adiabatic thin-film (chip) nanocalorimetry. Thermochimica Acta, 2005, 432, 177-185.	1.2	149
25	Continuous cooling precipitation diagrams of Al–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 87-96.	2.6	146
26	Phase angle correction for TMDSC in the glass-transition region. Thermochimica Acta, 1997, 304-305, 267-275.	1.2	143
27	Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals. Scientific Reports, 2013, 3, 1130.	1.6	143
28	Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid and Polymer Science, 2001, 279, 800-806.	1.0	141
29	Glassy Dynamics in Thin Polymer Layers Having a Free Upper Interface. Macromolecules, 2008, 41, 3636-3639.	2.2	141
30	Crystallization and Homogeneous Nucleation Kinetics ofÂPoly(Îμ-caprolactone) (PCL) with Different Molar Masses. Macromolecules, 2012, 45, 3816-3828.	2.2	134
31	Kinetics of nucleation and crystallization of poly(ε-caprolactone) – Multiwalled carbon nanotube composites. European Polymer Journal, 2014, 52, 1-11.	2.6	126
32	Characteristic length of glass transition: experimental evidence. Physica Scripta, 1991, 43, 423-429.	1.2	125
33	Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments. European Physical Journal E, 2003, 12, 173-178.	0.7	124
34	Effect of Supercooling on Crystallization of Polyamide 11. Macromolecules, 2013, 46, 828-835.	2.2	124
35	Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1364-1377.	2.4	123
36	Crystallization of polypropylene at various cooling rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 442-446.	2.6	120

#	Article	IF	CITATIONS
37	Superheating in linear polymers studied by ultrafast nanocalorimetry. European Physical Journal E, 2007, 23, 43-53.	0.7	119
38	Dielectric spectroscopy and calorimetry in the glass transition region of semi-crystalline poly(ethylene terephthalate). Journal of Thermal Analysis, 1996, 47, 1027-1040.	0.7	118
39	Temperature modulated calorimetry and dielectric spectroscopy in the glass transition region of polymers. Journal of Thermal Analysis, 1996, 46, 935-954.	0.7	116
40	Formation and disappearance of the rigid amorphous fraction in semicrystalline polymers revealed from frequency dependent heat capacity. Thermochimica Acta, 2003, 396, 119-132.	1.2	115
41	Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol. Journal of Chemical Physics, 2007, 126, 104503.	1.2	112
42	Isothermal Crystallization of Isotactic Poly(propylene) Studied by Superfast Calorimetry. Macromolecular Rapid Communications, 2007, 28, 875-881.	2.0	109
43	Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochimica Acta, 2012, 538, 55-62.	1.2	109
44	Segmental and chain dynamics of polymers: from the bulk to the confined state. Journal of Non-Crystalline Solids, 2002, 305, 140-149.	1.5	108
45	Polymers in nanoconfinement: What can be learned from relaxation and scattering experiments?. Journal of Non-Crystalline Solids, 2005, 351, 2668-2677.	1.5	108
46	Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000K/min). Thermochimica Acta, 2006, 442, 25-30.	1.2	108
47	Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007, 461, 153-157.	1.2	107
48	Melting of Conformationally Disordered Crystals (α′â€Phase) of Poly(<scp> </scp> â€lactic acid). Macromolecular Chemistry and Physics, 2014, 215, 1134-1139.	1.1	106
49	Ultra-fast isothermal calorimetry using thin film sensors. Thermochimica Acta, 2004, 415, 1-7.	1.2	103
50	Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer, 2015, 81, 151-158.	1.8	103
51	Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter. Polymer Testing, 2014, 36, 10-19.	2.3	97
52	Temperature of Melting of the Mesophase of Isotactic Polypropylene. Macromolecules, 2009, 42, 7275-7278.	2.2	96
53	Substituent Effects on the Benzene Ring. Determination of the Intramolecular Interactions of Substituents intert-Alkyl-Substituted Catechols from Thermochemical Measurements. Journal of Chemical & Engineering Data, 2000, 45, 946-952.	1.0	95
54	Glass transition of polymers confined to nanoporous glasses. Colloid and Polymer Science, 2004, 282, 882-891.	1.0	95

#	Article	IF	CITATIONS
55	Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly (l-lactic acid). Polymer, 2014, 55, 4932-4941.	1.8	95
56	Silk I and Silk II studied by fast scanning calorimetry. Acta Biomaterialia, 2017, 55, 323-332.	4.1	92
57	Crystallization of glass-forming liquids: Maxima of nucleation, growth, and overall crystallization rates. Journal of Non-Crystalline Solids, 2015, 429, 24-32.	1.5	91
58	The three-phase structure and mechanical properties of poly(ethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2092-2106.	2.4	89
59	Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochimica Acta, 2005, 432, 222-228.	1.2	89
60	Homogeneous crystal nucleation in polymers. Journal of Physics Condensed Matter, 2017, 29, 453002.	0.7	89
61	Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer, 2011, 52, 5156-5165.	1.8	88
62	Experimental Test of Tammann's Nuclei Development Approach in Crystallization of Macromolecules. Crystal Growth and Design, 2015, 15, 786-798.	1.4	88
63	Density of heterogeneous and homogeneous crystal nuclei in poly (butylene terephthalate). European Polymer Journal, 2015, 66, 180-189.	2.6	88
64	Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. European Polymer Journal, 2014, 53, 100-108.	2.6	84
65	Crystallization of Polyethylene at Large Undercooling. ACS Macro Letters, 2016, 5, 365-370.	2.3	84
66	Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer, 2012, 53, 3994-4001.	1.8	83
67	Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer, 2012, 53, 277-282.	1.8	83
68	Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. Journal of Non-Crystalline Solids, 1998, 235-237, 510-516.	1.5	80
69	Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. European Physical Journal: Special Topics, 2007, 141, 153-160.	1.2	80
70	Crystallization of poly(Îμ-caprolactone)/MWCNT composites: A combined SAXS/WAXS, electrical and thermal conductivity study. Polymer, 2014, 55, 2220-2232.	1.8	80
71	One Micrometer Length Scale Controls Kinetic Stability of Low-Energy Glasses. Journal of Physical Chemistry Letters, 2010, 1, 388-392.	2.1	79
72	Effect of Aging the Glass of Isotactic Polybutene-1 on Form II Nucleation and Cold Crystallization. Journal of Physical Chemistry B, 2013, 117, 15196-15203.	1.2	78

#	Article	IF	CITATIONS
73	Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochimica Acta, 2015, 615, 8-14.	1.2	78
74	Recording of continuous cooling precipitation diagrams of aluminium alloys. Thermochimica Acta, 2009, 492, 73-78.	1.2	77
75	Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates. Materials, 2015, 8, 2830-2848.	1.3	77
76	Experimental Test of Tammann's Nuclei Development Approach in Crystallization of Macromolecules. International Polymer Processing, 2016, 31, 628-637.	0.3	76
77	Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochimica Acta, 2009, 482, 1-7.	1.2	74
78	Application of an extended Tool–Narayanaswamy–Moynihan model. Thermochimica Acta, 2001, 377, 85-96.	1.2	72
79	Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochimica Acta, 2007, 461, 96-106.	1.2	72
80	Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Physical Chemistry Chemical Physics, 2014, 16, 2971.	1.3	72
81	Reversible melting probed by temperature modulated dynamic mechanical and calorimetric measurements. Colloid and Polymer Science, 1998, 276, 289-296.	1.0	71
82	Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. Journal of Alloys and Compounds, 2009, 484, 777-781.	2.8	71
83	Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Measurement Science and Technology, 2006, 17, 199-207.	1.4	70
84	Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020. Journal of Alloys and Compounds, 2014, 584, 581-589.	2.8	70
85	Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K sâ~'1; 5) Tj ETQq1	1 0.7843 1.6	14 rgBT /Ov
86	Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and Layered Double Hydroxide – Proof of interfaces. European Polymer Journal, 2014, 55, 48-56.	2.6	69
87	Crystal Nucleation of Polymers at High Supercooling of the Melt. Advances in Polymer Science, 2015, , 257-288.	0.4	68
88	Crystal nucleation in random l/d-lactide copolymers. European Polymer Journal, 2016, 75, 474-485.	2.6	68
89	Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochimica Acta, 1999, 330, 55-64.	1.2	67
90	First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. Journal of Physical Chemistry Letters, 2018, 9, 2003-2008.	2.1	67

#	Article	IF	CITATIONS
91	lonic Liquids. Combination of Combustion Calorimetry with High-Level Quantum Chemical Calculations for Deriving Vaporization Enthalpies. Journal of Physical Chemistry B, 2008, 112, 8095-8098.	1.2	65
92	Calorimetric Glass Transition of Poly(2,6-dimethyl-1,5-phenylene oxide) Thin Films. Macromolecules, 2008, 41, 7662-7666.	2.2	65
93	<i>In situ</i> investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. Journal of Chemical Physics, 2013, 138, 024501.	1.2	65
94	Kinetics of nucleation and crystallization in poly(butylene succinate) nanocomposites. Polymer, 2014, 55, 6725-6734.	1.8	65
95	Step response analysis in DSC — a fast way to generate heat capacity spectra. Thermochimica Acta, 2001, 380, 5-12.	1.2	63
96	Broad band heat capacity spectroscopy in the glass-transition region of polystyrene. Thermochimica Acta, 1997, 304-305, 251-255.	1.2	62
97	Early stages of polymer crystallization—a dielectric study. Polymer, 2003, 44, 7467-7476.	1.8	62
98	Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry. Journal of Chemical Physics, 2010, 133, 014702.	1.2	60
99	How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane. Journal of Chemical Physics, 2015, 142, 054506.	1.2	60
100	Effect of graphene nanoplatelets diameter on non-isothermal crystallization kinetics and melting behavior of high density polyethylene nanocomposites. Thermochimica Acta, 2016, 643, 94-103.	1.2	60
101	Temperature modulated differential scanning calorimetry – extension to high and low frequencies. Thermochimica Acta, 2015, 603, 227-236.	1.2	59
102	Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Physical Chemistry Chemical Physics, 2016, 18, 21381-21390.	1.3	59
103	Application of Tammann's Two-Stage Crystal Nuclei Development Method for Analysis of the Thermal Stability of Homogeneous Crystal Nuclei of Poly(ethylene terephthalate). Macromolecules, 2015, 48, 8082-8089.	2.2	58
104	Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Physical Review E, 2007, 75, 061708.	0.8	57
105	Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid and Polymer Science, 2014, 292, 1893-1904.	1.0	57
106	The melting of polymers $\hat{a} \in \hat{~}$ a three-phase approach. Thermochimica Acta, 1994, 238, 203-227.	1.2	56
107	Metastability of polymer crystallites formed at low temperature studied by ultra fast calorimetry: Polyamide 6 confined in sub-micrometer droplets vs. bulk PA6. Polymer, 2006, 47, 2172-2178.	1.8	56
108	Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: "a super membrane for CO2-capture― Energy and Environmental Science, 2011, 4, 4656.	15.6	56

#	Article	IF	CITATIONS
109	Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2015, 119, 9680-9691.	1.1	56
110	Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids. Thermochimica Acta, 2013, 562, 84-95.	1.2	55
111	Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses. European Physical Journal: Special Topics, 2007, 141, 255-259.	1.2	54
112	Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter, 2013, 9, 10592.	1.2	54
113	Melting and recrystallization kinetics of poly(butylene terephthalate). Polymer, 2017, 109, 307-314.	1.8	54
114	Crystallization behavior of nanocomposites based on poly(l-lactide) and MgAl layered double hydroxides – Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller. Polymer, 2017, 108, 257-264.	1.8	54
115	Fundamental thermal properties of polyvinyl alcohol by fast scanning calorimetry. Polymer, 2018, 137, 145-155.	1.8	54
116	Application of an extended Tool–Narayanaswamy–Moynihan model.Part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC. Polymer, 2005, 46, 12240-12246.	1.8	53
117	On the dependence of the properties of glasses on cooling and heating rates. Journal of Non-Crystalline Solids, 2011, 357, 1291-1302.	1.5	53
118	Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Applied Physics A: Materials Science and Processing, 2011, 104, 189-196.	1.1	52
119	Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth. Journal of Non-Crystalline Solids, 2015, 429, 45-53.	1.5	51
120	Interplay between the Relaxation of the Glass of Random <scp>l</scp> / <scp>d</scp> -Lactide Copolymers and Homogeneous Crystal Nucleation: Evidence for Segregation of Chain Defects. Journal of Physical Chemistry B, 2016, 120, 4522-4528.	1.2	51
121	Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter. Journal of Chemical Physics, 2014, 140, 104513.	1.2	50
122	Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids Are Significantly Larger than those of Protic Ionic liquids. Angewandte Chemie - International Edition, 2016, 55, 11682-11686.	7.2	50
123	Crystal reorganization of poly (butylene terephthalate). Polymer, 2017, 124, 274-283.	1.8	49
124	Polystyrene/calcium phosphate nanocomposites: Dynamic mechanical and differential scanning calorimetric studies. Composites Science and Technology, 2008, 68, 3220-3229.	3.8	48
125	Isotropization, perfection and reorganization of the mesophase of isotactic polypropylene. Thermochimica Acta, 2011, 522, 100-109.	1.2	47
126	H2storage and CO2capture on a nanoscale metal organic framework with high thermal stability. Chemical Communications, 2012, 48, 759-761.	2.2	47

#	Article	IF	CITATIONS
127	Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. Journal of Chemical Physics, 2013, 138, 054501.	1.2	47
128	Two crystal populations with different melting/reorganization kinetics of isothermally crystallized polyamide 6. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2126-2138.	2.4	47
129	Supercooling-controlled heterogeneous and homogenous crystal nucleation of polyamide 11 and its effect onto the crystal/mesophase polymorphism. Polymer, 2016, 106, 29-34.	1.8	47
130	Separation of components of different molecular mobility by calorimetry, dynamic mechanical and dielectric spectroscopy. Journal of Theoretical Biology, 1997, 49, 499-511.	0.8	46
131	Analysis of the reorganization of poly(ethylen terephthalate) in the melting range by temperature-modulated calorimetry. Polymer Bulletin, 1998, 40, 297-303.	1.7	46
132	Nonlinear thermal response at the glass transition. Journal of Chemical Physics, 1999, 111, 2695-2700.	1.2	46
133	Highly Stable Glasses of <i>cis</i> -Decalin and <i>cis</i> /i>/ <i>trans</i> -Decalin Mixtures. Journal of Physical Chemistry B, 2013, 117, 12724-12733.	1.2	46
134	Melting temperature and heat of fusion of cytosine revealed from fast scanning calorimetry. Thermochimica Acta, 2017, 657, 47-55.	1.2	46
135	Kinetics of Nucleation and Growth of Crystals of Poly(l-lactic acid). Advances in Polymer Science, 2017, , 235-272.	0.4	46
136	Thermal conductivity from dynamic response of DSC. Thermochimica Acta, 2001, 377, 183-191.	1.2	45
137	Temperature Dependency of Nucleation Efficiency of Carbon Nanotubes in PET and PBT. Macromolecular Materials and Engineering, 2015, 300, 637-649.	1.7	45
138	Method for Calculation of the Lamellar Thickness Distribution of Not-Reorganized Linear Polyethylene Using Fast Scanning Calorimetry in Heating. Macromolecules, 2015, 48, 8831-8837.	2.2	45
139	New experimental melting properties as access for predicting amino-acid solubility. RSC Advances, 2018, 8, 6365-6372.	1.7	45
140	Optical Microscopy to Study Crystal Nucleation in Polymers Using a Fast Scanning Chip Calorimeter for Precise Control of the Nucleation Pathway. Macromolecular Chemistry and Physics, 2018, 219, 1700479.	1.1	45
141	Coordination Polymers of Bipyridyldicarboxylates - a Cobalt Containing 12,3-net with Potential Reactive Sites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2001, 627, 1711-1713.	0.6	44
142	Dynamics of reversible melting revealed from frequency dependent heat capacity. Thermochimica Acta, 2002, 392-393, 303-313.	1.2	44
143	Evidence of pre-crystalline-order in super-cooled polymer melts revealed from simultaneous dielectric spectroscopy and SAXS. Journal of Non-Crystalline Solids, 2005, 351, 2773-2779.	1.5	44
144	Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2019, 104, 53-137.	16.0	44

#	Article	IF	CITATIONS
145	Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochimica Acta, 2006, 446, 55-65.	1.2	43
146	Influence of the heat conductivity of the sample on DSC curves and its correction. Thermochimica Acta, 1991, 187, 335-349.	1.2	42
147	Advanced two-channel ac calorimeter for simultaneous measurements of complex heat capacity and complex thermal conductivity. Thermochimica Acta, 2003, 403, 89-103.	1.2	42
148	Pattern formation in thin polystyrene films induced by an enhanced mobility in ambient air. Physical Review E, 2005, 71, 061801.	0.8	42
149	Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter. Thermochimica Acta, 2011, 522, 86-95.	1.2	42
150	Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer, 2017, 126, 240-247.	1.8	42
151	Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2. International Journal of Hydrogen Energy, 2013, 38, 2770-2777.	3.8	41
152	Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals. Polymer, 2014, 55, 4307-4312.	1.8	41
153	Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems. Journal of the American Chemical Society, 2015, 137, 1157-1164.	6.6	41
154	Does temperature fluctuate? Indirect proof by dynamic glass transition in confined geometries. Journal of Physics Condensed Matter, 2000, 12, L281-L286.	0.7	40
155	Glass transition cooperativity from heat capacity spectroscopy—temperature dependence and experimental uncertainties. Thermochimica Acta, 2001, 377, 113-124.	1.2	40
156	Glass transition under confinement-what can be learned from calorimetry. European Physical Journal: Special Topics, 2010, 189, 3-36.	1.2	40
157	Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates. Journal of Non-Crystalline Solids, 2015, 409, 63-75.	1.5	40
158	Temperature calibration of temperature-modulated differential scanning calorimeters. Thermochimica Acta, 1997, 304-305, 229-237.	1.2	39
159	Melting properties of amino acids and their solubility in water. RSC Advances, 2020, 10, 44205-44215.	1.7	39
160	Dynamic behaviour of power compensated differential scanning calorimeters. Thermochimica Acta, 1993, 229, 37-52.	1.2	38
161	Complex heat capacity measurements by TMDSC. Part 2. Algorithm for amplitude and phase angle correction. Thermochimica Acta, 1999, 330, 65-73.	1.2	38
162	Quench-induced precipitates in Al–Si alloys: Calorimetric determination of solute content and characterisation of microstructure. Thermochimica Acta, 2015, 602, 63-73.	1.2	38

#	Article	IF	CITATIONS
163	Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. Journal of Chemical Physics, 2016, 145, 174506.	1.2	38
164	Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials, 2019, 12, 4083.	1.3	38
165	Relaxation and crystal nucleation in polymer glasses. European Polymer Journal, 2018, 102, 195-208.	2.6	37
166	Temperature modulated differential scanning calorimetry (TMDSC) – basics and applications to polymers. Handbook of Thermal Analysis and Calorimetry, 2002, , 713-810.	1.6	36
167	Quantitative understanding of two distinct melting kinetics of an isothermally crystallized poly(ether ether ketone). Polymer, 2016, 99, 97-104.	1.8	36
168	Dynamic behaviour of power-compensated differential scanning calorimeters. Part 4. The influence of changes in material properties. Thermochimica Acta, 1994, 244, 49-59.	1.2	35
169	Improvement of AC calorimetry for simultaneous measurements of heat capacity and thermal conductivity of polymers. Thermochimica Acta, 1998, 317, 117-131.	1.2	35
170	Critical rate of cooling for suppression of crystallization in random copolymers of propylene with ethylene and 1-butene. Thermochimica Acta, 2009, 492, 67-72.	1.2	35
171	Differential alternating current chip calorimeter for <i>in situ</i> investigation of vapor-deposited thin films. Review of Scientific Instruments, 2012, 83, 033902.	0.6	35
172	Ionic Liquids: Differential Scanning Calorimetry as a New Indirect Method for Determination of Vaporization Enthalpies. Journal of Physical Chemistry B, 2012, 116, 4276-4285.	1.2	35
173	Experimental and Theoretical Thermodynamic Study of Distillable Ionic Liquid 1,5-Diazabicyclo[4.3.0]non-5-enium Acetate. Industrial & Engineering Chemistry Research, 2016, 55, 10445-10454.	1.8	35
174	Continuous cooling precipitation diagram of aluminium alloy AA7150 based on a new fast scanning calorimetry and interrupted quenching method. Materials Characterization, 2016, 120, 30-37.	1.9	35
175	Effect of Backbone Rigidity on the Class Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. ACS Macro Letters, 2019, 8, 1022-1028.	2.3	35
176	Molecular dynamics of the α-relaxation during crystallization of a low-molecular-weight compound: A real-time dielectric spectroscopy study. Journal of Chemical Physics, 1998, 108, 9062-9068.	1.2	34
177	Title is missing!. Magyar Apróvad Közlemények, 2000, 60, 807-820.	1.4	34
178	Molecular dynamics in glass-forming poly(phenyl methyl siloxane) as investigated by broadband thermal, dielectric and neutron spectroscopy. Journal of Non-Crystalline Solids, 2007, 353, 3853-3861.	1.5	34
179	Exactly Defined Half-Stemmed Polymer Lamellar Crystals with Precisely Controlled Defects' Locations. Journal of Physical Chemistry Letters, 2013, 4, 2356-2360.	2.1	34
180	Structure–property relationships in ILs: Vaporization enthalpies of pyrrolidinium based ionic liquids. Journal of Molecular Liquids, 2014, 192, 171-176.	2.3	34

#	Article	IF	CITATIONS
181	Kinetic stability and heat capacity of vapor-deposited glasses of <i>o</i> -terphenyl. Journal of Chemical Physics, 2015, 143, 084511.	1.2	34
182	Phase transitions and nucleation mechanisms in metals studied by nanocalorimetry: A review. Thermochimica Acta, 2015, 603, 2-23.	1.2	34
183	Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry. Nano Letters, 2017, 17, 7751-7760.	4.5	34
184	Melt-recrystallization of poly (l-lactic acid) initially containing α′-crystals. Polymer, 2019, 176, 227-235.	1.8	34
185	Temperature calibration on cooling using liquid crystal phase transitions. Thermochimica Acta, 1993, 221, 129-137.	1.2	33
186	Simultaneous multi-frequency TMDSC measurements. Thermochimica Acta, 2001, 377, 193-204.	1.2	33
187	Characterization of the copolymer poly(ethyleneglycol-g-vinylalcohol) as a potential carrier in the formulation of solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 239-247.	2.0	33
188	Formation and reorganization of the mesophase of random copolymers of propylene and 1-butene. Polymer, 2011, 52, 1107-1115.	1.8	33
189	Precipitation enthalpy during cooling of aluminum alloys obtained from calorimetric reheating experiments. Thermochimica Acta, 2012, 529, 51-58.	1.2	33
190	Lactoferrin-Immobilized Surfaces onto Functionalized PLA Assisted by the Gamma-Rays and Nitrogen Plasma to Create Materials with Multifunctional Properties. ACS Applied Materials & Interfaces, 2016, 8, 31902-31915.	4.0	33
191	Application of fast scanning calorimetry to the fusion thermochemistry of low-molecular-weight organic compounds: Fast-crystallizing m-terphenyl heat capacities in a deeply supercooled liquid state. Thermochimica Acta, 2018, 668, 96-102.	1.2	33
192	On the dependence of the properties of glasses on cooling and heating rates II. Journal of Non-Crystalline Solids, 2011, 357, 1303-1309.	1.5	32
193	Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochimica Acta, 2015, 603, 205-217.	1.2	32
194	Effect of molar mass on enthalpy relaxation and crystal nucleation of poly (l-lactic acid). European Polymer Journal, 2017, 96, 361-369.	2.6	32
195	Insights into crystallization and melting of high density polyethylene/graphene nanocomposites studied by fast scanning calorimetry. Polymer Testing, 2018, 67, 349-358.	2.3	32
196	Der Einfluß struktureller Veräderungen auf den Glasübergang in teilkristallinem Polyethylenterephthalat. I. Isotherme Kristallisation. Acta Polymerica, 1985, 36, 47-53.	1.3	31
197	Multi-frequency heat capacity measured with different types of TMDSC. Thermochimica Acta, 2002, 392-393, 195-207.	1.2	31
198	Fast isothermal calorimetry of modified polypropylene clay nanocomposites. Polymer, 2007, 48, 2404-2414.	1.8	31

#	Article	IF	CITATIONS
199	Vaporization enthalpies of imidazolium based ionic liquids. A thermogravimetric study of the alkyl chain length dependence. Journal of Chemical Thermodynamics, 2012, 54, 433-437.	1.0	31
200	Growth and dissolution of crystal nuclei in poly(l-lactic acid) (PLLA) in Tammann's development method. Polymer, 2020, 196, 122453.	1.8	31
201	Title is missing!. Magyar Apróvad Közlemények, 2000, 61, 649-659.	1.4	30
202	Title is missing!. Magyar Apróvad Közlemények, 2000, 59, 279-288.	1.4	30
203	Calibration of magnitude and phase angle of TMDSC. Thermochimica Acta, 2002, 391, 51-67.	1.2	30
204	Molecular dynamics of hyperbranched polyesters in the confinement of thin films. European Physical Journal E, 2005, 17, 199-202.	0.7	30
205	Poly(butylene terephthalate) Copolymers Obtained via Solid-State Polymerization and Melt Polymerization. A Study on the Microstructure via 13C NMR Sequence Distribution. Macromolecules, 2005, 38, 10658-10666.	2.2	30
206	Repeated nucleation in an undercooled tin droplet by fast scanning calorimetry. Materials Letters, 2009, 63, 2476-2478.	1.3	30
207	Melting properties of peptides and their solubility in water. Part 1: dipeptides based on glycine or alanine. RSC Advances, 2019, 9, 32722-32734.	1.7	30
208	Calibration of magnitude and phase angle of TMDSC. Thermochimica Acta, 2002, 391, 69-80.	1.2	29
209	Crystallization in glass-forming liquids: Effects of fragility and glass transition temperature. Journal of Non-Crystalline Solids, 2015, 428, 68-74.	1.5	29
210	Advanced AC calorimetry of polycaprolactone in melting region. Thermochimica Acta, 1999, 330, 109-119.	1.2	28
211	Determination of vapor pressures, enthalpies of sublimation, enthalpies of vaporization, and enthalpies of fusion of a series of chloro-aminobenzenes and chloro-nitrobenzenes. Fluid Phase Equilibria, 2003, 211, 161-177.	1.4	28
212	Phase separation in polymer blend thin films studied by differential AC chip calorimetry. Polymer, 2010, 51, 647-654.	1.8	28
213	New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. , 2016, , 463-535.		28
214	Der Einfluß struktureller Veräderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat). 3. Der Glasübergang in den Zwischenlamellaren Bereichen. Acta Polymerica, 1990, 41, 137-142.	1.3	27
215	Applicability of 8OCB for temperature calibration of temperature modulated calorimeters. Thermochimica Acta, 2000, 347, 53-61.	1.2	27
216	Comparison of the Molecular Dynamics of a Liquid Crystalline Side Group Polymer Revealed from Temperature Modulated DSC and Dielectric Experiments in the Glass Transition Region. Macromolecular Chemistry and Physics, 2001, 202, 1398-1404.	1.1	27

#	Article	IF	CITATIONS
217	High-temperature high-pressure crystallization and sintering behavior of brookite-free nanostructured titanium dioxide: in situ experiments using synchrotron radiation. Thermochimica Acta, 2003, 403, 129-136.	1.2	27
218	Competitive Crystallization of a Propylene/Ethylene Random Copolymer Filled with a β-Nucleating Agent and Multi-Walled Carbon Nanotubes. Conventional and Ultrafast DSC Study. Journal of Physical Chemistry B, 2013, 117, 14875-14884.	1.2	27
219	The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese Journal of Polymer Science (English) Tj ETQq1 1 C).78 43 014 r	gBT2#Overloc
220	Enthalpy Relaxation of Polyamide 11 of Different Morphology Far Below the Glass Transition Temperature. Entropy, 2019, 21, 984.	1.1	27
221	Experimental analysis of lateral thermal inhomogeneity of a specific chip-calorimeter sensor. Thermochimica Acta, 2019, 674, 95-99.	1.2	27
222	Vapor-deposited glasses of methyl- <i>m</i> -toluate: How uniform is stable glass transformation?. Journal of Chemical Physics, 2015, 143, 244509.	1.2	26
223	Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry. Journal of Physical Chemistry B, 2015, 119, 6848-6851.	1.2	26
224	Kauzmann paradox and the crystallization of glass-forming melts. Journal of Non-Crystalline Solids, 2018, 501, 21-35.	1.5	26
225	Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. Polymer Crystallization, 2018, 1, e10005.	0.5	26
226	Interplay between Free Surface and Solid Interface Nucleation on Two-Step Crystallization of Poly(ethylene terephthalate) Thin Films Studied by Fast Scanning Calorimetry. Macromolecules, 2018, 51, 5209-5218.	2.2	26
227	Title is missing!. Magyar Apróvad Közlemények, 1999, 56, 1155-1161.	1.4	25
228	Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochimica Acta, 2014, 589, 183-196.	1.2	25
229	New menthol polymorphs identified by flash scanning calorimetry. CrystEngComm, 2015, 17, 5357-5359.	1.3	25
230	Melting of nucleobases. Getting the cutting edge of "Walden's Rule― Physical Chemistry Chemical Physics, 2019, 21, 12787-12797.	1.3	25
231	The Origin of Annealing Peaks in Semicrystalline Polymers: Enthalpy Recovery or Melting?. Macromolecules, 2020, 53, 8751-8756.	2.2	25
232	Crystallization and Melting of Polycarbonate Studied by Temperature-Modulated DSC (TMDSC). Magyar Apróvad Közlemények, 2001, 64, 549-555.	1.4	24
233	Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy. Soft Matter, 2012, 8, 11115.	1.2	24
234	An elegant access to formation and vaporization enthalpies of ionic liquids by indirect DSC experiment and "in silico―calculations. Chemical Communications, 2012, 48, 6915.	2.2	24

#	Article	IF	CITATIONS
235	New Hydrogels Based on Substituted Anhydride Modified Collagen and 2-Hydroxyethyl Methacrylate. Synthesis and Characterization. Industrial & Engineering Chemistry Research, 2014, 53, 11239-11248.	1.8	24
236	Kinetics of isothermal and non-isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry. Polymer, 2016, 82, 40-48.	1.8	24
237	Kinetic stability of amorphous solid dispersions with high content of the drug: A fast scanning calorimetry investigation. International Journal of Pharmaceutics, 2019, 562, 113-123.	2.6	24
238	In situ differential scanning calorimetry analysis of dissolution and precipitation kinetics in Mg–Y–RE alloy WE43. Journal of Magnesium and Alloys, 2019, 7, 1-14.	5.5	24
239	Crystallization and melting of poly(butylene terephthalate) and poly(ethylene terephthalate) investigated by fast-scan chip calorimetry and small angle X-ray scattering. Polymer, 2020, 192, 122303.	1.8	24
240	Der Einfluß struktureller Veräderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat). 2. Charakterisierung der übermolekularen Struktur. Acta Polymerica, 1988, 39, 705-710.	1.3	23
241	Crystallization of polymers studied by temperature-modulated techniques (TMDSC, TMDMA). Journal of Macromolecular Science - Physics, 1999, 38, 693-708.	0.4	23
242	Glass transition and stable glass formation of tetrachloromethane. Journal of Chemical Physics, 2016, 144, 244503.	1.2	23
243	Crystallization kinetics of poly(butylene terephthalate) and its talc composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	23
244	Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural <i>α</i> - and Debye relaxation processes. Journal of Chemical Physics, 2017, 147, 014502.	1.2	23
245	High-speed dynamics of temperature distribution in ultrafast (up to 108 K/s) chip-nanocalorimeters, measured by infrared thermography of high resolution. Journal of Applied Physics, 2019, 125, .	1.1	23
246	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds. Thermochimica Acta, 2019, 676, 249-262.	1.2	23
247	High frequency alternating current chip nano calorimeter with laser heating. Review of Scientific Instruments, 2013, 84, 073903.	0.6	22
248	Crystallinity of poly(3-hexylthiophene) in thin films determined by fast scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1791-1801.	2.4	22
249	Stability of Crystal Nuclei of Poly (butylene isophthalate) Formed Near the Glass Transition Temperature. Polymers, 2020, 12, 1099.	2.0	22
250	Vapor-deposited α,α,β-tris-naphthylbenzene glasses with low heat capacity and high kinetic stability. Journal of Chemical Physics, 2012, 137, 154502.	1.2	21
251	On the theoretical determination of the Prigogine-Defay ratio in glass transition. Journal of Chemical Physics, 2012, 136, 124502.	1.2	21
252	Continuous cooling precipitation diagram of cast aluminium alloy Al-7Si-0.3Mg. Transactions of Nonferrous Metals Society of China, 2014, 24, 2025-2033.	1.7	21

#	Article	IF	CITATIONS
253	Temperature fluctuations and the thermodynamic determination of the cooperativity length in glass forming liquids. Journal of Chemical Physics, 2017, 146, 104501.	1.2	21
254	Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. Journal of Chemical Physics, 2017, 146, 203317.	1.2	21
255	Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(I-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller. Polymer, 2019, 184, 121929.	1.8	21
256	Amphipilic and mesogenic carbohydrates XII. New thermotropic mesogens based on perfluoroalkyl-substituted carbohydrates. Liquid Crystals, 2000, 27, 163-168.	0.9	20
257	Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols. Thermochimica Acta, 2004, 415, 35-42.	1.2	20
258	Crystallization behavior of some unimodal and bimodal linear lowâ€density polyethylenes at moderate and high supercooling. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1577-1588.	2.4	20
259	Phase transition in tetragonal hen egg-white lysozyme crystals. Applied Physics Letters, 2009, 95, .	1.5	20
260	Influence of the Cross-Link Density on the Rate of Crystallization of Poly(Îμ-Caprolactone). Polymers, 2018, 10, 902.	2.0	20
261	Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. Soft Matter, 2021, 17, 2775-2790.	1.2	20
262	Assessment of AlZnMgCu alloy powder modification for crack-free laser powder bed fusion by differential fast scanning calorimetry. Materials and Design, 2021, 204, 109677.	3.3	20
263	Das kontinuierliche Zeit-Temperatur-Ausscheidungs-Diagramm einer Aluminiumlegierung EN AW-6005A*. HTM - Journal of Heat Treatment and Materials, 2010, 65, 159-171.	0.1	20
264	On temperature calibration of power compensation DSC in cooling mode. Thermochimica Acta, 1991, 187, 351-356.	1.2	19
265	Frequency and temperature amplitude dependence of complex heat capacity in the melting region of polymers. Journal of Macromolecular Science - Physics, 1999, 38, 1045-1054.	0.4	19
266	Temperature modulated dynamic mechanical analysis. Thermochimica Acta, 1999, 330, 121-130.	1.2	19
267	A transient polymorph transition of 4-cyano-4′-octyloxybiphenyl (8OCB) revealed by ultrafast differential scanning calorimetry (UFDSC). Soft Matter, 2013, 9, 1488-1491.	1.2	19
268	Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments. Materials, 2014, 7, 2631-2649.	1.3	19
269	Thermochemical properties of 1,2,3,4-tetraphenylnaphthalene and 1,3,5-triphenylbenzene in crystalline and liquid states studied by solution and fast scanning calorimetry. Journal of Molecular Liquids, 2019, 278, 394-400.	2.3	19
270	Crystallization kinetics and glass-forming ability of rapidly crystallizing drugs studied by Fast Scanning Calorimetry. International Journal of Pharmaceutics, 2021, 599, 120427.	2.6	19

#	Article	IF	CITATIONS
271	Dynamic behaviour of power-compensated differential scanning calorimeters. Part 3. The influence of material properties (an error evaluation). Thermochimica Acta, 1994, 244, 33-48.	1.2	18
272	Joint Statement of Editors of Journals Publishing Thermophysical Property Data. Journal of Chemical & Engineering Data, 2009, 54, 2-3.	1.0	18
273	Continuous cooling precipitation diagram of high alloyed Al-Zn-Mg-Cu 7049A alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 2018-2024.	1.7	18
274	Optical characterization of CdS nanorods capped with starch. Journal of Molecular Structure, 2015, 1088, 95-100.	1.8	18
275	Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochimica Acta, 2015, 603, 110-115.	1.2	18
276	Steady-State Crystal Nucleation Rate of Polyamide 66 by Combining Atomic Force Microscopy and Fast-Scanning Chip Calorimetry. Macromolecules, 2020, 53, 5560-5571.	2.2	18
277	Simultaneous measurements of complex heat capacity and complex thermal conductivity by two-channel AC calorimeter. Thermochimica Acta, 2001, 377, 173-182.	1.2	17
278	The thermodynamic properties of S-lactic acid. Russian Journal of Physical Chemistry A, 2010, 84, 1491-1497.	0.1	17
279	Size-dependent undercooling of pure Sn by single particle DSC measurements. Science Bulletin, 2010, 55, 2063-2065.	1.7	17
280	Formation and Reorganization of the Mesophase of Isotactic Polypropylene. Molecular Crystals and Liquid Crystals, 2012, 556, 74-83.	0.4	17
281	Long-chain linear alcohols: Reconciliation of phase transition enthalpies. Journal of Chemical Thermodynamics, 2020, 146, 106103.	1.0	17
282	Dielectric and thermal relaxations in amorphous and semicrystalline poly(ethylene terephthalate). , 1998, , 9-12.		16
283	Chip calorimetry for fast cooling and thin films: a review. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 229-248.	0.4	16
284	Benchmark Values: Thermochemistry of the Ionic Liquid [C4Py][Cl]. Australian Journal of Chemistry, 2012, 65, 1487.	0.5	16
285	Enthalpy relaxation of selenium observed by fast scanning calorimetry. Thermochimica Acta, 2015, 603, 142-148.	1.2	16
286	Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering. Journal of Alloys and Compounds, 2016, 667, 109-114.	2.8	16
287	Visualization of Polymer Crystallization by In Situ Combination of Atomic Force Microscopy and Fast Scanning Calorimetry. Polymers, 2019, 11, 890.	2.0	16
288	Melt-electrospinning of poly(ether ether ketone) fibers to avoid sulfonation. Polymer, 2019, 171, 50-57.	1.8	16

#	Article	IF	CITATIONS
289	Glass transition and primary crystallization of Al86Ni6Y4.5Co2La1.5 metallic glass at heating rates spanning over six orders of magnitude. Scripta Materialia, 2019, 162, 146-150.	2.6	16
290	Bulk Enthalpy of Melting of PolyÂ(<scp>l</scp> ″actic acid) (PLLA) Determined by Fast Scanning Chip Calorimetry. Macromolecular Rapid Communications, 2022, 43, e2200148.	2.0	16
291	The molecular dynamics of polymers in random nanometre confined spaces investigated by relaxational and scattering techniques. Journal of Physics Condensed Matter, 2003, 15, S1139-S1148.	0.7	15
292	Rapid solidification behavior of nano-sized Sn droplets embedded in the Al matrix by nanocalorimetry. Materials Research Express, 2014, 1, 045012.	0.8	15
293	Heat conduction in ultrafast thin-film nanocalorimetry. Thermochimica Acta, 2016, 640, 42-51.	1.2	15
294	Kinetic stability of amorphous dipyridamole: A fast scanning calorimetry investigation. International Journal of Pharmaceutics, 2020, 574, 118890.	2.6	15
295	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1980, 1, 407-409.	1.1	14
296	Combining X-ray scattering with dielectric and calorimetric experiments for monitoring polymer crystallization. European Polymer Journal, 2009, 45, 3282-3291.	2.6	14
297	Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids. Journal of Thermal Analysis and Calorimetry, 2013, 112, 353-358.	2.0	14
298	Nucleation ontrolled semicrystalline morphology of bulk polymers. Polymer Crystallization, 2018, 1, e10036.	0.5	14
299	Sublimation thermodynamics of nucleobases derived from fast scanning calorimetry. Physical Chemistry Chemical Physics, 2020, 22, 838-853.	1.3	14
300	The Narrow Thickness Distribution of Lamellae of Poly(butylene succinate) Formed at Low Melt Supercooling. Macromolecules, 2021, 54, 3366-3376.	2.2	14
301	Nucleation behaviour and microstructure of single Al-Si12 powder particles rapidly solidified in a fast scanning calorimeter. Journal of Materials Science, 2021, 56, 12881-12897.	1.7	14
302	Reversing and nonreversing contributions to polymer melting. Colloid and Polymer Science, 2003, 281, 113-122.	1.0	13
303	Calorimetric study of blend miscibility of polymers confined in ultra-thin films. European Physical Journal: Special Topics, 2010, 189, 187-195.	1.2	13
304	Using fast scanning calorimetry to study solid-state cyclization of dipeptide L-leucyl-L-leucine. Thermochimica Acta, 2020, 692, 178748.	1.2	13
305	Melting Properties of Peptides and Their Solubility in Water. Part 2: Di- and Tripeptides Based on Glycine, Alanine, Leucine, Proline, and Serine. Industrial & Engineering Chemistry Research, 2021, 60, 4693-4704.	1.8	13
306	Insertionâ€Crystallizationâ€Induced Lowâ€Temperature Annealing Peaks in Meltâ€Crystallized Poly(<scp>l</scp> â€Lactic Acid). Macromolecular Chemistry and Physics, 2021, 222, 2100177.	1.1	13

#	Article	IF	CITATIONS
307	Full-composition-range glass transition behavior of the polymer/solvent system poly (lactic acid) / ethyl butylacetylaminopropionate (PLA/IR3535®). Polymer, 2020, 209, 123058.	1.8	13
308	Application of the Flash DSC 1 and 2+ for vapor pressure determination above solids and liquids. Thermochimica Acta, 2021, 706, 179067.	1.2	13
309	Polystyrene/calcium phosphate nanocomposites: Morphology, mechanical, and dielectric properties. Polymer Engineering and Science, 2012, 52, 689-699.	1.5	12
310	Fast scanning calorimetric measurements and microstructure observation of rapid solidified Sn3.5Ag solder droplets. Thermochimica Acta, 2013, 565, 194-201.	1.2	12
311	Stability studies of ionic liquid [EMIm][NTf ₂] under short-term thermal exposure. RSC Advances, 2016, 6, 48462-48468.	1.7	12
312	Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition. Journal of Chemical Physics, 2018, 148, 174503.	1.2	12
313	Development of Direct and Indirect Methods for the Determination of Vaporization Enthalpies of Extremely Low-Volatile Compounds. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 1-46.	1.6	12
314	Correlation between glass transition temperature and the width of the glass transition interval. International Journal of Applied Glass Science, 2019, 10, 502-513.	1.0	12
315	A new method for heat capacity determination in supercooled liquid state using fast scanning calorimetry: Thermochemical study of 9,9'-bifluorenyl. Thermochimica Acta, 2020, 694, 178805.	1.2	12
316	Fingerprints of homogeneous nucleation and crystal growth in polyamide 66 as studied by combined infrared spectroscopy and fast scanning chip calorimetry. Colloid and Polymer Science, 2020, 298, 697-706.	1.0	12
317	The Ideal Quenching Medium? – Characterisation of Ionic Liquids for Heat Treatment of Metallic Components. HTM - Journal of Heat Treatment and Materials, 2013, 68, 214-223.	0.1	12
318	Dielectric and thermald relaxations in low molecular mass liquid crystals. , 1991, , 148-156.		11
319	Dielectric processes of wet and well-dried wheat starch. Carbohydrate Polymers, 2004, 56, 361-366.	5.1	11
320	Interphase phenomena in superconductive polymer-ceramic nanocomposites. Composite Interfaces, 2006, 13, 535-544.	1.3	11
321	Vapour pressures and heat capacity measurements on the C7–C9 secondary aliphatic alcohols. Journal of Chemical Thermodynamics, 2007, 39, 758-766.	1.0	11
322	Study of the heat-induced denaturation and water state of hybrid hydrogels based on collagen and poly (N-isopropyl acrylamide) in hydrated conditions. Thermochimica Acta, 2014, 589, 114-122.	1.2	11
323	Characterization of human cancellous and subchondral bone with respect to electro physical properties and bone mineral density by means of impedance spectroscopy. Medical Engineering and Physics, 2017, 45, 34-41.	0.8	11
324	Comment on "Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nanofocus X-ray scattering and nanocalorimetry―by Ivanov et al. [European Polymer Journal 81 (2016) 598–606.]. European Polymer Journal, 2017, 94, 511-516.	2.6	11

#	Article	IF	CITATIONS
325	Cold-crystallization of poly(butylene 2,6-naphthalate) following Ostwald's rule of stages. Thermochimica Acta, 2018, 670, 71-75.	1.2	11
326	Fast scanning calorimetry of lysozyme unfolding at scanning rates from 5 K/min to 500,000 K/min. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2024-2030.	1.1	11
327	Icosahedral phase formation in Ag-substituted Ti–Zr–Ni rapidly-quenched alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 294-296, 90-92.	2.6	10
328	Nucleotide-induced changes in muscle fibres studied by DSC and TMDSC. Thermochimica Acta, 2001, 377, 205-210.	1.2	10
329	Verifying the symmetry of ultra-fast scanning calorimeters using liquid crystal secondary temperature standards. Thermochimica Acta, 2011, 526, 58-64.	1.2	10
330	Study of phase transition in tetragonal lysozyme crystals by AC-nanocalorimetry. Thermochimica Acta, 2012, 544, 33-37.	1.2	10
331	Thermochemical study of rhodium(III) acetylacetonate. Journal of Chemical Thermodynamics, 2016, 102, 442-450.	1.0	10
332	Dispersion und Wasserstoffbrücken bestimmend – Warum die Verdampfungsenthalpien von aprotischen größer als die von protischen ionischen Flüssigkeiten sind. Angewandte Chemie, 2016, 128, 11856-11860.	1.6	10
333	Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy. Journal of Chemical Physics, 2017, 146, 203321.	1.2	10
334	Using fast scanning calorimetry to detect guest-induced polymorphism by irreversible phase transitions in the nanogram scale. CrystEngComm, 2019, 21, 1034-1041.	1.3	10
335	Smart control of calixarene polymorphic states. CrystEngComm, 2020, 22, 7002-7015.	1.3	10
336	Melting Kinetics of Superheated Polymer Crystals Examined by Isothermal and Nonisothermal Fast Scanning Calorimetry. Macromolecules, 2021, 54, 8770-8779.	2.2	10
337	Nucleation and crystallization kinetics of polyamide 12 investigated by fast scanning calorimetry. Journal of Polymer Science, 2022, 60, 842-855.	2.0	10
338	Room temperature ionic liquids in a heat treatment process for metals. RSC Advances, 2014, 4, 55077-55081.	1.7	9
339	Reprint of "Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry― Thermochimica Acta, 2015, 603, 149-161.	1.2	9
340	Novel method for fast scanning calorimetry of electrospun fibers. Thermochimica Acta, 2018, 667, 65-72.	1.2	9
341	Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations. Molecules, 2019, 24, 2794.	1.7	9
342	Effect of multi-step annealing above the glass transition temperature on the crystallization and melting kinetics of semicrystalline polymers. Polymer, 2020, 202, 122712.	1.8	9

#	Article	IF	CITATIONS
343	Integro-Differential Equation for the Non-Equilibrium Thermal Response of Glass-Forming Materials: Analytical Solutions. Symmetry, 2021, 13, 256.	1.1	9
344	Variations of interfacial thermal conductance at melting and crystallization of an indium micro-particle in contact with a solid. Materials and Design, 2021, 201, 109475.	3.3	9
345	On the crystal stabilization during two-step isothermal crystallization of poly(butylene) Tj ETQq1 1 0.784314 rgBT	/Overlock 1.8	2]0 Tf 50 6
346	Fast Scanning Calorimetry of Organic Materials from Low Molecular Mass Materials to Polymers. Reviews and Advances in Chemistry, 2021, 11, 1-72.	0.2	9
347	Ionic Liquids as New Quenching Media for Aluminium Alloys and Steels*. HTM - Journal of Heat Treatment and Materials, 2015, 70, 73-80.	0.1	9
348	Determination of peak base line for semicrystalline polymers. Thermochimica Acta, 1991, 187, 261-268.	1.2	8
349	Magnesium diolates as precursors for MgO: A low-temperature route. Thermochimica Acta, 1997, 302, 195-200.	1.2	8
350	Testing the performance and the disintegration of biodegradable bags for the collection of organic wastes. Macromolecular Symposia, 2001, 165, 115-122.	0.4	8
351	Phase transition phenomena and the corresponding relaxation process of wheat starch–water polymer matrix studied by dielectric spectroscopic method. Carbohydrate Polymers, 2006, 65, 129-133.	5.1	8
352	Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties. Materials, 2009, 2, 2154-2187.	1.3	8
353	Hydrogen storage and selective carbon dioxide capture in a new chromium(iii)-based infinite coordination polymer. RSC Advances, 2012, 2, 2939.	1.7	8
354	Non-Adiabatic Scanning Calorimeter for Controlled Fast Cooling and Heating. , 2016, , 81-104.		8
355	Nanometer scale thermal response of polymers to fast thermal perturbations. Journal of Chemical Physics, 2018, 149, 074503.	1.2	8
356	Nucleationâ€controlled dual semicrystalline morphology of polyamide 11. Polymer International, 2019, 68, 263-270.	1.6	8
357	Vitrification and Devitrification of the Rigid Amorphous Fraction in Semicrystalline Polymers Revealed from Frequency Dependent Heat Capacity. Lecture Notes in Physics, 2003, , 252-274.	0.3	8
358	Characteristic length of glass transition from calorimetry in different confinements. European Physical Journal Special Topics, 2000, 10, Pr7-79-Pr7-82.	0.2	8
359	Thermal contact conductance at melting and crystallization of metal micro-droplets. Materials Research Express, 2020, 7, 066524.	0.8	8
360	Glass Transition Kinetics and Physical Aging of Polyvinylpyrrolidones with Different Molecular Masses. Macromolecules, 2022, 55, 4516-4522.	2.2	8

#	Article	lF	CITATIONS
361	Homogeneous nucleation in polyamide 66, a two-stage process as revealed by combined nanocalorimetry and IR spectroscopy. Colloid and Polymer Science, 2022, 300, 1247-1255.	1.0	8
362	ZeitabhÃ ¤ gigkeit der Enthalpie im Glasübergangsbereich von Polyvinylchlorid. Acta Polymerica, 1982, 33, 163-168.	1.3	7
363	Making impact in thermal sciences: Overview of highly cited papers published in Thermochimica Acta. Thermochimica Acta, 2010, 500, 1-5.	1.2	7
364	Calorimetry. , 2012, , 793-823.		7
365	Structure-Property Relations in Ionic Liquids: 1,2,3-Trimethyl- <i>imidazolium</i> and 1,2,3-Trimethyl- <i>benzimidazolium</i> bis-(trifluorsulfonyl)imide. Zeitschrift Fur Physikalische Chemie, 2013, 227, 205-216.	1.4	7
366	1. Influence of Thermal Prehistory on Crystal Nucleation and Growth in Polymers. , 2014, , 1-94.		7
367	Fast Scanning Chip Calorimetry. Handbook of Thermal Analysis and Calorimetry, 2018, , 47-102.	1.6	7
368	Bridging the local configurations and crystalline counterparts of bulk metallic glass by nanocalorimetry. Journal of Materials Research and Technology, 2019, 8, 3603-3611.	2.6	7
369	Thermal Stability and Nucleation Efficacy of Shear-Induced Pointlike and Shishlike Crystallization Precursors. ACS Macro Letters, 2021, 10, 684-689.	2.3	7
370	Dynamic heat capacity measurements in advanced AC calorimetry. Thermochimica Acta, 1999, 342, 7-18.	1.2	6
371	Nucleotides Induced Changes in Skeletal Muscle Myosin by DSC, TMDSC and EPR. Magyar Apróvad Közlemények, 2001, 66, 633-644.	1.4	6
372	Physical–mechanical, superconducting, thermo-physical properties and interphase phenomena of polymer–ceramic nano-composites. Journal of Materials Processing Technology, 2008, 200, 319-324.	3.1	6
373	A 900 MHz, 3.6 Gb/s bandpass DSM receiver with 55.7 dB two-tone SFDR in 1 MHz bandwidth. , 2009, , .		6
374	Crystallization kinetics and miscibility of blends of polyhydroxybutyrate (PHB) with ethylene vinyl acetate copolymers (EVA). E-Polymers, 2011, 11, .	1.3	6
375	Devitrification of the amorphous fractions of starch during gelatinisation. Carbohydrate Polymers, 2012, 90, 140-146.	5.1	6
376	Non-equilibrium fast thermal response of polymers. Thermochimica Acta, 2018, 660, 82-93.	1.2	6
377	Molecular weight and interfacial effect on the kinetic stabilization of ultrathin polystyrene films. Polymer, 2018, 134, 204-210.	1.8	6
378	Enthalpy of formation and disordering temperature of transient monotropic liquid crystals of poly(butylene 2,6-naphthalate). Polymer, 2018, 158, 77-82.	1.8	6

#	Article	IF	CITATIONS
379	Zero-Entropy-Production Melting Temperature of Crystals of Poly(butylene succinate) Formed at High Supercooling of the Melt. Macromolecules, 2022, 55, 965-970.	2.2	6
380	Glass transition in semicrystalline systems. Thermochimica Acta, 1993, 229, 299-310.	1.2	5
381	Sol–gel synthesis and characterization of fine-grained ceramics in the alumina–titania system. Thermochimica Acta, 2008, 468, 10-14.	1.2	5
382	Microcalorimetry for characterization of film formation and cure of coatings and adhesives. Progress in Organic Coatings, 2008, 61, 166-175.	1.9	5
383	Microwave calorimetry using X-rays. Thermochimica Acta, 2011, 526, 137-142.	1.2	5
384	Reliable Absolute Vapor Pressures of Extremely Low Volatile Compounds from Fast Scanning Calorimetry. , 2016, , 259-296.		5
385	The Calorimetric Glass Transition in a Wide Range of Cooling Rates and Frequencies. Advances in Dielectrics, 2018, , 307-351.	1.2	5
386	In situ investigation of precipitation in aluminium alloys via thermal diffusivity from laser flash analysis. Journal of Thermal Analysis and Calorimetry, 2020, 140, 725-733.	2.0	5
387	Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials, 2021, 14, 2920.	1.3	5
388	Glass-Forming Ability of Polyzwitterions. Macromolecules, 2021, 54, 10126-10134.	2.2	5
389	Refolding of Lysozyme in Glycerol as Studied by Fast Scanning Calorimetry. International Journal of Molecular Sciences, 2022, 23, 2773.	1.8	5
390	Fast Scanning Calorimetry of Phase Transitions in Metals. , 2016, , 691-721.		4
391	Precipitation and Dissolution Kinetics in Metallic Alloys with Focus on Aluminium Alloys by Calorimetry in a Wide Scanning Rate Range. , 2016, , 723-773.		4
392	Fast Scanning Calorimetry of Silk Fibroin Protein: Sample Mass and Specific Heat Capacity Determination. , 2016, , 187-203.		4
393	Extending Cooling Rate Performance of Fast Scanning Chip Calorimetry by Liquid Droplet Cooling. Applied Sciences (Switzerland), 2021, 11, 3813.	1.3	4
394	Crystal Nucleation and Growth in Cross-Linked Poly(Î μ -caprolactone) (PCL). Polymers, 2021, 13, 3617.	2.0	4
395	Ein Verfahren zur Bestimmung der Enthalpieäderung von Polymeren als Folge isothermer Kristallisations- oder Retardationsprozesse. Acta Polymerica, 1985, 36, 181-182.	1.3	3
396	Effect of Lateral Nitro Groups on the Properties of Sulfur-Ligated Twin Mesogens. Journal Für Praktische Chemie, Chemiker-Zeitung, 1998, 340, 608-612.	0.5	3

#	Article	IF	CITATIONS
397	Molecular dynamics revealed from frequency dependent heat capacity. Macromolecular Symposia, 2001, 165, 83-90.	0.4	3
398	Development of thermal stability of polymer crystals during isothermal crystallisation. E-Polymers, 2002, 2, .	1.3	3
399	Reorganization of Lamellar Diblock Copolymer Poly(εâ€caprolactone)â€≺i>blockâ€poly(4â€vinylpyridine) in the Melting Temperature Range. Macromolecular Chemistry and Physics, 2015, 216, 2211-2220.	1.1	3
400	Morphology of α-crystals of poly (butylene 2,6-naphthalate) crystallized via a liquid crystalline mesophase according to Ostwald's rule of stages. Polymer, 2020, 194, 122404.	1.8	3
401	Kinetics of homogeneous crystal nucleation of polyamide 11 near the glass transition temperature. Polymer Crystallization, 2021, 4, .	0.5	3
402	The melting properties of D-α-glucose, D-β-fructose, D-sucrose, D-α-galactose, and D-α-xylose and their solubility in water: A revision. Food Biophysics, 2022, 17, 181-197.	1.4	3
403	Formation of imperfect crystals in poly(ε-caprolactone) at high melt-supercooling. Materials Letters, 2022, 324, 132704.	1.3	3
404	Glass-Forming Terephthalic Esters with Lateral Phenylthio Groups and their Relaxation Behavior. Molecular Crystals and Liquid Crystals, 1998, 312, 55-68.	0.3	2
405	<i>In Situ</i> Isothermal Calorimetric Measurement of Precipitation Behaviour in Al-Mg-Si Alloys. Materials Science Forum, 0, 794-796, 939-944.	0.3	2
406	Advances in polymer crystallization. Polymer Crystallization, 2018, 1, e10026.	0.5	2
407	General Concepts of Crystallization: Some Recent Results and Possible Future Developments. Advances in Dielectrics, 2020, , 1-21.	1.2	2
408	Surface Crystal Nucleation and Growth in Poly (Îμ-caprolactone): Atomic Force Microscopy Combined with Fast Scanning Chip Calorimetry. Polymers, 2021, 13, 2008.	2.0	2
409	Advanced Dilatometry and Calorimetry for the Validation of Materials Mechanical and Transformation Models. , 0, , 177-182.		2
410	Simultaneous Calorimetric, Dielectric, and SAXS/WAXS Experiments During Polymer Crystallization. Lecture Notes in Physics, 2009, , 217-230.	0.3	2
411	Step-scan differential calorimetry of protein denaturation: Modeling and experiment. Thermochimica Acta, 2022, 710, 179181.	1.2	2
412	Production and properties of doped PSN electro-optical ceramics. , 1997, , .		1
413	Poly(methyl phenyl siloxane) in Random Nanoporous Glasses: Molecular Dynamics and Structure. Materials Research Society Symposia Proceedings, 2003, 790, 1.	0.1	1

#	Article	IF	CITATIONS
415	Cover Image: Nucleationâ€controlled semicrystalline morphology of bulk polymers. Polymer Crystallization, 2018, 1, e10115.	0.5	1
416	Recent Advances in Thermal Analysis and Calorimetry of Aluminum Alloys. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 735-779.	1.6	1
417	A fast scanning calorimetry study of nucleation in a Se90Te10 glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 249, 114425.	1.7	1
418	Determination of Bone Density and Bone Composition Using Thermoaravimetric Analysis. , 2019, , .		1
419	Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2021, 120, 100819.	16.0	1
420	Crystallization kinetics, polymorphism fine tuning, and rigid amorphous fraction of poly(vinylidene) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5

421	Dynamic Calorimetric Glass Transition in Thin Polymer Films. Advances in Dielectrics, 2014, , 307-338.	1.2	1
422	Cyclic Olefin Copolymers (COC)—Excellent Glass Formers with Low Dynamic Fragility. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
423	Einfluß der polymerisationsbedingungen auf die morphologie von schwefel-styrol-polymerisaten. Angewandte Makromolekulare Chemie, 1988, 160, 131-140.	0.3	0
424	Intermetallic Phases in Ti-Ag-Zr-Ni Alloys. Materials Research Society Symposia Proceedings, 2000, 644, 12101.	0.1	0
425	Poly(methyl phenyl siloxane) in Random Nanoporous Glasses: Comparison of coated and uncoated confining surfaces. Materials Research Society Symposia Proceedings, 2005, 899, 1.	0.1	0
426	Advanced Dilatometry and Calorimetry for the Validation of Materials Mechanical and Transformation Models. , 2013, , 177-182.		0
427	Heat transfer mechanisms analysed by high speed video recording of metal quenching in ionic liquids and water. International Journal of Microstructure and Materials Properties, 2016, 11, 359.	0.1	0
428	Decoupling Between Structural and Conductivity Relaxation in Aprotic Ionic Liquids. Advances in Dielectrics, 2016, , 213-233.	1.2	0
429	A <scp>DSC</scp> study of polypropylene chain branching effects on structure formation under rapid cooling and reheating from the amorphous glass. Polymer Crystallization, 2020, 3, e10142.	0.5	0
430	Maximum Possible Cooling Rate in Ultrafast Chip Nanocalorimetry: Fundamental Limitations Due to Thermal Resistance at the Membrane/Gas Interface. Applied Sciences (Switzerland), 2021, 11, 8224.	1.3	0
431	SiO2 Nanofiller impact on crystallization kinetics during adiabatic anionic polymerization of $\hat{\mu}$ -caprolactam. E-Polymers, 2011, 11, .	1.3	0
	Monitoring Precipitation during Rapid Quenching of Aluminium Alloys by Calorimetric Reheating		

Experiments. , 2012, , 43-48.

#	Article	IF	CITATIONS
433	Quench Sensitivity and Continuous Cooling Precipitation Diagrams. , 2019, , .		0
434	Determination of electrophysical and structural properties of human cancellous bone and synthetic bone substitute material using impedance spectroscopy and X-ray powder diffraction. Acta of Bioengineering and Biomechanics, 2018, 20, 11-19.	0.2	0
435	Crystallization of Polymers and the Rigid Amorphous Fraction Studied by the Temperature-Modulated Techniques TMDSC and TMDMA. , 2001, , 32-46.		0