Zicheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8310064/publications.pdf Version: 2024-02-01

ZICHENC YU

#	Article	IF	CITATIONS
1	Latitude, Elevation, and Mean Annual Temperature Predict Peat Organic Matter Chemistry at a Global Scale. Global Biogeochemical Cycles, 2022, 36, .	1.9	11
2	Anthropogenic warming reduces the carbon accumulation of Tibetan Plateau peatlands. Quaternary Science Reviews, 2022, 281, 107449.	1.4	5
3	Environmental controls over Holocene carbon accumulation in Distichia muscoides-dominated peatlands in the eastern Andes of Colombia. Quaternary Science Reviews, 2021, 251, 106687.	1.4	6
4	Possible obliquity-forced warmth in southern Asia during the last glacial stage. Science Bulletin, 2021, 66, 1136-1145.	4.3	71
5	Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 2021, 11, 70-77.	8.1	167
6	The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000ÂcalÂyr BP. Science of the Total Environment, 2021, 757, 143990.	3.9	17
7	Reconciling carbon ycle processes from ecosystem to global scales. Frontiers in Ecology and the Environment, 2021, 19, 57-65.	1.9	12
8	Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Global Change Biology, 2021, 27, 3837-3845.	4.2	26
9	No support for carbon storage of >1,000 GtC in northern peatlands. Nature Geoscience, 2021, 14, 465-467.	5.4	8
10	Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 2021, 14, 550-558.	5.4	62
11	The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences, 2020, 17, 47-54.	1.3	23
12	Resource competition and allelopathy in two peat mosses: implication for niche differentiation. Plant and Soil, 2020, 446, 229-242.	1.8	14
13	Ecological response of a glacier-fed peatland to late Holocene climate and glacier changes on subantarctic South Georgia. Quaternary Science Reviews, 2020, 250, 106679.	1.4	3
14	Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20438-20446.	3.3	307
15	Temperature-Dependent Oxygen Isotope Fractionation in Plant Cellulose Biosynthesis Revealed by a Global Dataset of Peat Mosses. Frontiers in Earth Science, 2020, 8, .	0.8	1
16	Modeling Holocene Peatland Carbon Accumulation in North America. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005230.	1.3	5
17	Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses. Geochimica Et Cosmochimica Acta, 2020, 277, 265-284.	1.6	23
18	Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Science Advances, 2020, 6, eaay6193.	4.7	74

#	Article	IF	CITATIONS
19	Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China. Journal of Hydrology, 2020, 589, 125169.	2.3	12
20	The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia. Atmosphere, 2020, 11, 514.	1.0	1
21	Peatland development and carbon dynamics since the Last Glacial Maximum in the Hengduan Mountains Region. Catena, 2020, 190, 104525.	2.2	9
22	Western Pacific Ocean influences on monsoon precipitation in the southwestern Chinese Loess Plateau since the mid-Holocene. Climate Dynamics, 2020, 54, 3121-3134.	1.7	20
23	Regional Climate Change Recorded in Moss Oxygen and Carbon Isotopes from a Late Holocene Peat Archive in the Western Antarctic Peninsula. Geosciences (Switzerland), 2019, 9, 282.	1.0	3
24	Late Holocene vegetation and climate changes in the Great Hinggan Mountains, northeast China. Quaternary International, 2019, 532, 138-145.	0.7	19
25	Temperature influence on peatland carbon accumulation over the last century in Northeast China. Climate Dynamics, 2019, 53, 2161-2173.	1.7	9
26	Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews, 2019, 192, 337-354.	4.0	366
27	A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley. Quaternary Science Reviews, 2019, 212, 80-91.	1.4	68
28	Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4822-4827.	3.3	82
29	Intron length polymorphism of β-tubulin genes in Deschampsia antarctica É. Desv. across the western coast of the Antarctic Peninsula. Polar Science, 2019, 19, 151-154.	0.5	7
30	Peatbank response to late Holocene temperature and hydroclimate change in the western Antarctic Peninsula. Quaternary Science Reviews, 2018, 188, 77-89.	1.4	12
31	Temporalâ€spatial pattern of organic carbon sequestration by Chinese lakes since 1850. Limnology and Oceanography, 2018, 63, 1283-1297.	1.6	30
32	Centennial-scale dynamics of the Southern Hemisphere Westerly Winds across the Drake Passage over the past two millennia. Geology, 2018, 46, 855-858.	2.0	17
33	Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past, 2018, 14, 473-514.	1.3	54
34	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	8.1	188
35	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
36	Holocene peatland and ice-core data constraints on the timing and magnitude of CO ₂ emissions from past land use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1492-1497.	3.3	34

#	Article	IF	CITATIONS
37	Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum. Geology, 2017, 45, 435-438.	2.0	67
38	Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth-Science Reviews, 2017, 165, 59-80.	4.0	91
39	Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates. Scientific Reports, 2017, 7, 12344.	1.6	17
40	Climatic history of the northeastern United States during the past 3000 years. Climate of the Past, 2017, 13, 1355-1379.	1.3	29
41	Quantifying soil carbon accumulation in Alaskan terrestrial ecosystems during the last 15â€ ⁻ 000 years. Biogeosciences, 2016, 13, 6305-6319.	1.3	5
42	Quantifying peat carbon accumulation in Alaska using a processâ€based biogeochemistry model. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2172-2185.	1.3	8
43	Holocene climate controls on water isotopic variations on the northeastern Tibetan Plateau. Chemical Geology, 2016, 440, 239-247.	1.4	29
44	Measurements of hydrogen, oxygen and carbon isotope variability in <i>Sphagnum</i> moss along a microâ€ŧopographical gradient in a southern Patagonian peatland. Journal of Quaternary Science, 2016, 31, 426-435.	1.1	28
45	Transformations of landscape and peatâ€forming ecosystems in response to late Holocene climate change in the western Antarctic Peninsula. Geophysical Research Letters, 2016, 43, 7186-7195.	1.5	28
46	Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence. Quaternary Science Reviews, 2016, 147, 312-339.	1.4	123
47	A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic peatlands. Quaternary Geochronology, 2016, 31, 53-61.	0.6	29
48	Carbon accumulation and sequestration of lakes in China during the Holocene. Global Change Biology, 2015, 21, 4436-4448.	4.2	42
49	Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 2014, 11, 6573-6593.	1.3	1,079
50	Continental fens in western Canada as effective carbon sinks during the Holocene. Holocene, 2014, 24, 1090-1104.	0.9	22
51	Holocene peatland carbon dynamics in the circum-Arctic region: An introduction. Holocene, 2014, 24, 1021-1027.	0.9	25
52	A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene, 2014, 24, 1028-1042.	0.9	404
53	Peatland initiation and carbon accumulation in China over the last 50,000years. Earth-Science Reviews, 2014, 128, 139-146.	4.0	74
54	Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum. Quaternary Science Reviews, 2014, 86, 63-77.	1.4	5

#	Article	IF	CITATIONS
55	Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau. Holocene, 2014, 24, 1137-1145.	0.9	28
56	Vegetation and climate change during Marine Isotope Stage 3 in China. Science Bulletin, 2014, 59, 4444-4455.	1.7	17
57	Recent increase in peatland carbon accumulation in a thermokarst lake basin in southwestern Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 186-195.	1.0	15
58	Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peatlands in Southcentral Alaska. Quaternary Science Reviews, 2013, 64, 61-75.	1.4	19
59	Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska. Quaternary Science Reviews, 2013, 63, 42-58.	1.4	25
60	Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 41-53.	1.3	74
61	Holocene temperature fluctuations in the northern Tibetan Plateau. Quaternary Research, 2013, 80, 55-65.	1.0	85
62	Evidence for elevated emissions from highâ€latitude wetlands contributing to high atmospheric CH ₄ concentration in the early Holocene. Global Biogeochemical Cycles, 2013, 27, 131-140.	1.9	45
63	Holocene peatland carbon dynamics in Patagonia. Quaternary Science Reviews, 2013, 69, 125-141.	1.4	53
64	Quantifying landscape morphology influence on peatland lateral expansion using groundâ€penetrating radar (GPR) and peat core analysis. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 373-384.	1.3	39
65	A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska. Ecosystems, 2013, 16, 1-19.	1.6	38
66	Surface vegetation patterning controls carbon accumulation in peatlands. Geophysical Research Letters, 2013, 40, 5508-5513.	1.5	54
67	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	1.3	475
68	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	1.3	165
69	Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century. Climate of the Past, 2013, 9, 1287-1308.	1.3	102
70	Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 2013, 10, 929-944.	1.3	257
71	A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 2013, 5, 393-402.	3.7	148
72	Multidisciplinary studies in environmental archaeology with particular reference to China: An introduction to the Special Issue. Holocene, 2012, 22, 609-611.	0.9	2

#	Article	IF	CITATIONS
73	Global-scale pattern of peatland <i>Sphagnum</i> growth driven by photosynthetically active radiation and growing season length. Biogeosciences, 2012, 9, 2737-2746.	1.3	84
74	Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 2012, 9, 4071-4085.	1.3	516
75	Multiple early Holocene climate oscillations at Silver Lake, New Jersey and their possible linkage with outburst floods. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352, 171-179.	1.0	4
76	Peatlands as a model ecosystem of soil carbon dynamics: Reply to Comment on "Peatlands and their role in the global carbon cycle― Eos, 2012, 93, 31-31.	0.1	3
77	Late Holocene change in climate and atmospheric circulation inferred from geochemical records at Kepler Lake, south-central Alaska. Journal of Paleolimnology, 2012, 48, 55-67.	0.8	9
78	Vegetation response to Holocene climate change in East Asian monsoon-margin region. Earth-Science Reviews, 2012, 113, 1-10.	4.0	142
79	Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?. Quaternary Science Reviews, 2011, 30, 1173-1184.	1.4	203
80	Peatlands and Their Role in the Global Carbon Cycle. Eos, 2011, 92, 97-98.	0.1	153
81	Holocene carbon flux histories of the world's peatlands. Holocene, 2011, 21, 761-774.	0.9	211
82	Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania. Quaternary Research, 2011, 75, 531-540.	1.0	21
83	Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China. Journal of Paleolimnology, 2010, 44, 995-1008.	0.8	68
84	Late Holocene Vegetation and Climate Oscillations in the Qaidam Basin of the Northeastern Tibetan Plateau. Quaternary Research, 2010, 73, 59-69.	1.0	71
85	Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7347-7352.	3.3	203
86	Major shifts in multidecadal moisture variability in the Midâ€Atlantic region during the last 240 years. Geophysical Research Letters, 2010, 37, .	1.5	5
87	Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 2010, 37, .	1.5	813
88	Tree-ring width and δ13C records of industrial stress and recovery in Pennsylvania and New Jersey forests: Implications for CO2 uptake by temperate forests. Chemical Geology, 2010, 273, 250-257.	1.4	8
89	Vegetation history, climate change and human activities over the last 6200years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 197-205.	1.0	78
90	A 2700-year high resolution pollen record of climate change from varved Sugan Lake in the Qaidam Basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 290-298.	1.0	22

#	Article	lF	CITATIONS
91	Holocene climate trend, variability, and shift documented by lacustrine stable-isotope record in the northeastern United States. Quaternary Science Reviews, 2010, 29, 1831-1843.	1.4	55
92	Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews, 2009, 97, 242-256.	4.0	247
93	Possible solar forcing of 400-year wet–dry climate cycles in northwestern China. Climatic Change, 2009, 96, 473-482.	1.7	34
94	Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quaternary International, 2009, 194, 6-18.	0.7	115
95	Holocene climate variability in arid Asia: Nature and mechanisms. Quaternary International, 2009, 194, 1-5.	0.7	26
96	Possible orographic and solar controls of Late Holocene centennialâ€scale moisture oscillations in the northeastern Tibetan Plateau. Geophysical Research Letters, 2009, 36, .	1.5	40
97	Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. Journal of Arid Environments, 2008, 72, 2054-2064.	1.2	50
98	Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska. Quaternary Science Reviews, 2008, 27, 148-161.	1.4	33
99	Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews, 2008, 27, 6-17.	1.4	558
100	Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 2008, 27, 351-364.	1.4	967
101	INTegration of Ice-core, MArine, and TErrestrial records (INTIMATE): refining the record of the Last Glacial–Interglacial Transition. Quaternary Science Reviews, 2008, 27, 1-5.	1.4	29
102	Complex trajectories of aquatic and terrestrial ecosystem shifts caused by multiple human-induced environmental stresses. Geochimica Et Cosmochimica Acta, 2008, 72, 4338-4351.	1.6	23
103	Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Global and Planetary Change, 2008, 62, 107-114.	1.6	83
104	Sensitive moisture response to Holocene millennial-scale climate variations in the Mid-Atlantic region, USA. Holocene, 2007, 17, 3-8.	0.9	38
105	Late Holocene Natural and Human-Induced Environmental Change Reconstructed from Peat Records in Eastern Central China. Radiocarbon, 2007, 49, 789-798.	0.8	36
106	Holocene vegetation and climate changes from fossil pollen records in arid and semi-arid China. Developments in Quaternary Sciences, 2007, 9, 51-65.	0.1	5
107	Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quaternary Research, 2007, 67, 297-303.	1.0	41
108	Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology, 2007, 145, 275-288.	0.8	223

#	Article	IF	CITATIONS
109	A 14,000-year environmental change history revealed by mineral magnetic data from White Lake, New Jersey, USA. Earth and Planetary Science Letters, 2006, 246, 27-40.	1.8	31
110	Power laws governing hydrology and carbon dynamics in northern peatlands. Global and Planetary Change, 2006, 53, 169-175.	1.6	16
111	Modeling Ecosystem Processes and Peat Accumulation in Boreal Peatlands. , 2006, , 313-329.		8
112	Holocene Carbon Accumulation of Fen Peatlands in Boreal Western Canada: A Complex Ecosystem Response to Climate Variation and Disturbance. Ecosystems, 2006, 9, 1278-1288.	1.6	66
113	Late Quaternary dynamics of tundra and forest vegetation in the southern Niagara Escarpment, Canada. New Phytologist, 2003, 157, 365-390.	3.5	36
114	Understanding Holocene peat accumulation pattern of continental fens in western Canada. Canadian Journal of Botany, 2003, 81, 267-282.	1.2	110
115	Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene, 2003, 13, 801-808.	0.9	98
116	A 2100-year trace-element and stable-isotope record at decadal resolution from Rice Lake in the Northern Great Plains, USA. Holocene, 2002, 12, 605-617.	0.9	39
117	Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada. Journal of Vegetation Science, 2002, 13, 327-340.	1.1	30
118	Title is missing!. Journal of Paleolimnology, 2002, 28, 207-217.	0.8	27
119	Modelling long-term peatland dynamics. II. Processes and rates as inferred from litter and peat-core data. Ecological Modelling, 2001, 145, 159-173.	1.2	41
120	Modelling long-term peatland dynamics. I. Concepts, review, and proposed design. Ecological Modelling, 2001, 145, 197-210.	1.2	47
121	Three amphi-Atlantic century-scale cold events during the BÃ,lling-AllerÃ,d warm period. Géographie Physique Et Quaternaire, 2001, 55, 171-179.	0.2	55
122	Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth-Science Reviews, 2001, 52, 333-369.	4.0	100
123	Hydrologic Variation in the Northern Great Plains During the Last Two Millennia. Quaternary Research, 2000, 53, 175-184.	1.0	157
124	Millennial-Scale Rhythms in Peatlands in the Western Interior of Canada and in the Global Carbon Cycle. Quaternary Research, 2000, 54, 155-158.	1.0	55
125	Ecosystem response to Lateglacial and early Holocene climate oscillations in the Great Lakes region of North America. Quaternary Science Reviews, 2000, 19, 1723-1747.	1.4	61
126	Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology, 1999, 27, 263.	2.0	182

#	Article	IF	CITATIONS
127	Abrupt Climate Oscillations During the Last Deglaciation in Central North America. Science, 1998, 282, 2235-2238.	6.0	147
128	Middle Holocene dry climate caused by change in atmospheric circulation patterns: Evidence from lake levels and stable isotopes. Geology, 1997, 25, 251.	2.0	126
129	Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils. Review of Palaeobotany and Palynology, 1997, 96, 241-254.	0.8	36
130	Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Canadian Journal of Botany, 1996, 74, 1602-1615.	1.2	34
131	Holocene water levels at Rice Lake, Ontario, Canada: sediment, pollen and plant-macrofossil evidence. Holocene, 1994, 4, 141-152.	0.9	36
132	Sensitivity of Northern Peatland Carbon Dynamics to Holocene Climate Change. Geophysical Monograph Series, 0, , 55-69.	0.1	106