Julie A Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309998/publications.pdf

Version: 2024-02-01

75 3,054 35 papers citations h-index

78 78 78 2319
all docs docs citations times ranked citing authors

53

g-index

#	Article	IF	CITATIONS
1	Richard Hadley Holm: A Remembrance and A Tribute. Comments on Inorganic Chemistry, 2022, 42, 61-108.	5.2	2
2	Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds. Journal of the American Chemical Society, 2022, 144, 8515-8528.	13.7	5
3	Influence of Thiolate versus Alkoxide Ligands on the Stability of Crystallographically Characterized Mn(III)-Alkylperoxo Complexes. Journal of the American Chemical Society, 2021, 143, 6104-6113.	13.7	9
4	Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition. Inorganic Chemistry, 2021, 60, 7250-7261.	4.0	4
5	Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes. Inorganica Chimica Acta, 2021, 524, 120422.	2.4	1
6	Comparison of two Mn ^{IV} Mn ^{IV} -bis- \hat{l}_4 -oxo complexes {[Mn ^{IV} (N ₄ (6-Me-DPEN))] ₂ (\hat{l}_4 -O) ₂ } ²⁺ and {[Mn ^{IV} (N ₄ (6-Me-DPPN))] ₂ (\hat{l}_4 -O) ₂ } ²⁺ . Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 1042-1046.	0.5	1
7	Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. Journal of Biological Inorganic Chemistry, 2019, 24, 919-926.	2.6	5
8	How Metal Ion Lewis Acidity and Steric Properties Influence the Barrier to Dioxygen Binding, Peroxo O–O Bond Cleavage, and Reactivity. Journal of the American Chemical Society, 2019, 141, 15046-15057.	13.7	15
9	Formation of a Reactive, Alkyl Thiolate-Ligated Fe ^{III} -Superoxo Intermediate Derived from Dioxygen. Journal of the American Chemical Society, 2019, 141, 1867-1870.	13.7	38
10	How Do Ring Size and ï€-Donating Thiolate Ligands Affect Redox-Active, α-Imino- <i>N</i> heterocycle Ligand Activation?. Inorganic Chemistry, 2018, 57, 1935-1949.	4.0	7
11	Comparative electronic structures of nitrogenase FeMoco and FeVco. Dalton Transactions, 2017, 46, 2445-2455.	3.3	65
12	Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate. Journal of the American Chemical Society, 2017, 139, 119-129.	13.7	25
13	Iron L _{2,3} -Edge X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase. Inorganic Chemistry, 2017, 56, 8147-8158.	4.0	37
14	X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex. Inorganic Chemistry, 2015, 54, 6410-6422.	4.0	49
15	Water-Soluble Fe(II)–H ₂ O Complex with a Weak O–H Bond Transfers a Hydrogen Atom via an Observable Monomeric Fe(III)–OH. Journal of the American Chemical Society, 2015, 137, 2253-2264.	13.7	25
16	Tuning the Relative Stability and Reactivity of Manganese Dioxygen and Peroxo Intermediates via Systematic Ligand Modification. Accounts of Chemical Research, 2015, 48, 2744-2753.	15.6	50
17	Synthesis and Structural Characterization of a Series of MnIIIOR Complexes, Including a Water-Soluble MnIIIOH That Promotes Aerobic Hydrogen-Atom Transfer. Inorganic Chemistry, 2013, 52, 12383-12393.	4.0	44
18	Isolation and Characterization of a Dihydroxo-Bridged Iron(III,III)(ν-OH) ₂ Diamond Core Derived from Dioxygen. Inorganic Chemistry, 2013, 52, 13325-13331.	4.0	12

#	Article	IF	CITATIONS
19	Characterization of Metastable Intermediates Formed in the Reaction between a Mn(II) Complex and Dioxygen, Including a Crystallographic Structure of a Binuclear Mn(III) \hat{a} e Peroxo Species. Journal of the American Chemical Society, 2013, 135, 5631-5640.	13.7	80
20	Correlation Between Structural, Spectroscopic, and Reactivity Properties Within a Series of Structurally Analogous Metastable Manganese(III)–Alkylperoxo Complexes. Journal of the American Chemical Society, 2013, 135, 4260-4272.	13.7	67
21	Characterization and Dioxygen Reactivity of a New Series of Coordinatively Unsaturated Thiolate-Ligated Manganese(II) Complexes. Inorganic Chemistry, 2012, 51, 6633-6644.	4.0	35
22	Nitrile Hydration by Thiolate- and Alkoxide-Ligated Co-NHase Analogues. Isolation of Co(III)-Amidate and Co(III)-Iminol Intermediates. Journal of the American Chemical Society, 2011, 133, 3954-3963.	13.7	48
23	Investigation of the Mechanism of Formation of a Thiolate-Ligated Fe(III)-OOH. Inorganic Chemistry, 2011, 50, 1592-1602.	4.0	37
24	Influence of Thiolate Ligands on Reductive Nâ^'O Bond Activation. Probing the O ₂ ^{â^'} Binding Site of a Biomimetic Superoxide Reductase Analogue and Examining the Proton-Dependent Reduction of Nitrite. Journal of the American Chemical Society, 2011, 133, 1419-1427.	13.7	37
25	S K-Edge X-Ray Absorption Spectroscopy and Density Functional Theory Studies of High and Low Spin {FeNO} ⁷ Thiolate Complexes: Exchange Stabilization of Electron Delocalization in {FeNO} ⁷ and {FeO ₂ } ⁸ . Inorganic Chemistry, 2011, 50, 427-436.	4.0	38
26	Structural and Spectroscopic Characterization of Metastable Thiolate-Ligated Manganese(III)–Alkylperoxo Species. Journal of the American Chemical Society, 2011, 133, 12470-12473.	13.7	58
27	Comparison of structurally-related alkoxide, amine, and thiolate-ligated MII (M=Fe, Co) complexes: The influence of thiolates on the properties of biologically relevant metal complexes. Inorganica Chimica Acta, 2008, 361, 1070-1078.	2.4	21
28	Properties of Square-Pyramidal Alkylâ°'Thiolate Fe ^{III} Complexes, Including an Analogue of the Unmodified Form of Nitrile Hydratase. Inorganic Chemistry, 2008, 47, 11228-11236.	4.0	27
29	Understanding How the Thiolate Sulfur Contributes to the Function of the Non-Heme Iron Enzyme Superoxide Reductase. Accounts of Chemical Research, 2007, 40, 501-509.	15.6	91
30	Understanding the Mechanism of Superoxide Reductase Promoted Reduction of Superoxide. European Journal of Inorganic Chemistry, 2007, 2007, 29-38.	2.0	22
31	Periodic Trends within a Series of Five-Coordinate Thiolate-Ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe,) Tj ETQq1 1 2007, 46, 9267-9277.	l 0.78431 [,] 4.0	4 rgBT /Ov∈ 39
32	A Functional Model for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase (SOR). Journal of the American Chemical Society, 2006, 128, 14448-14449.	13.7	65
33	How Does Single Oxygen Atom Addition Affect the Properties of an Feâ°'Nitrile Hydratase Analogue? The Compensatory Role of the Unmodified Thiolate. Journal of the American Chemical Society, 2006, 128, 11211-11221.	13.7	93
34	Sulfur K-Edge XAS and DFT Calculations on Nitrile Hydratase:Â Geometric and Electronic Structure of the Non-heme Iron Active Site. Journal of the American Chemical Society, 2006, 128, 533-541.	13.7	91
35	Spectroscopy of Non-Heme Iron Thiolate Complexes:Â Insight into the Electronic Structure of the Low-Spin Active Site of Nitrile Hydratase. Inorganic Chemistry, 2005, 44, 1826-1836.	4.0	36
36	Role of Protons in Superoxide Reduction by a Superoxide Reductase Analogue. Inorganic Chemistry, 2005, 44, 1169-1171.	4.0	18

#	Article	IF	CITATIONS
37	Synthetic Analogues of Cysteinate-Ligated Non-Heme Iron and Non-Corrinoid Cobalt Enzymes. ChemInform, 2004, 35, no.	0.0	O
38	Ligand Oxidations in High-Spin Nickel Thiolate Complexes and Zinc Analogues. Inorganic Chemistry, 2004, 43, 7726-7734.	4.0	23
39	Synthetic Analogues of Cysteinate-Ligated Non-Heme Iron and Non-Corrinoid Cobalt Enzymes. Chemical Reviews, 2004, 104, 825-848.	47.7	260
40	Steric and Electronic Control over the Reactivity of a Thiolate-Ligated Fe(II) Complex with Dioxygen and Superoxide: Reversible μ-Oxo Dimer Formation. Inorganic Chemistry, 2004, 43, 7682-7690.	4.0	41
41	A chloride ion contained in a cobalt `claw': [Co3(DADIT)3]Cl(PF6)2. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m379-m380.	0.4	1
42	Understanding the mechanism of superoxide reduction by the non-heme iron enzyme superoxide reductase (SOR) using a synthetic analogue approach. Journal of Inorganic Biochemistry, 2003, 96, 20.	3.5	0
43	How does cyanide inhibit superoxide reductase? Insight from synthetic FellIN4S model complexes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3671-3676.	7.1	36
44	BIOCHEMISTRY: How Iron Activates O2. Science, 2003, 299, 1024-1025.	12.6	66
45	The First Example of a Nitrile Hydratase Model Complex that Reversibly Binds Nitriles. Journal of the American Chemical Society, 2002, 124, 11417-11428.	13.7	51
46	Synthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase:  Observation and Structural Characterization by XAS of an FeIllⰒOOH Intermediate. Journal of the American Chemical Society, 2002, 124, 11709-11717.	13.7	89
47	Enhancing Reactivity via Structural Distortion. Inorganic Chemistry, 2002, 41, 3128-3136.	4.0	26
48	Preparation and properties of [Nill(BEES)(Cl)](BPh4): a Nill complex in a mixed nitrogen/thioether coordination environment. Inorganica Chimica Acta, 2002, 336, 61-64.	2.4	1
49	Modeling the Reactivity of Superoxide Reducing Metalloenzymes with a Nitrogen and Sulfur Coordinated Iron Complex. Inorganic Chemistry, 2001, 40, 5483-5484.	4.0	37
50	Probing the Influence of Local Coordination Environment on the Properties of Fe-Type Nitrile Hydratase Model Complexes. Inorganic Chemistry, 2001, 40, 1646-1653.	4.0	35
51	Why Is There an "Inert―Metal Center in the Active Site of Nitrile Hydratase? Reactivity and Ligand Dissociation from a Five-Coordinate Co(III) Nitrile Hydratase Model. Journal of the American Chemical Society, 2001, 123, 463-468.	13.7	66
52	How Do Oxidized Thiolate Ligands Affect the Electronic and Reactivity Properties of a Nitrile Hydratase Model Compound?. Journal of the American Chemical Society, 2000, 122, 8299-8300.	13.7	65
53	A Co(III) Complex in a Mixed Sulfur/Nitrogen Ligand Environment:Â Modeling the Substrate- and Product-Bound Forms of the Metalloenzyme Thiocyanate Hydrolase. Inorganic Chemistry, 2000, 39, 4998-4999.	4.0	15
54	Nickel L-Edge Soft X-ray Spectroscopy of Nickelâ^'Iron Hydrogenases and Model CompoundsEvidence for High-Spin Nickel(II) in the Active Enzyme. Journal of the American Chemical Society, 2000, 122, 10544-10552.	13.7	140

#	Article	IF	CITATIONS
55	Reactivity of Five-Coordinate Models for the Thiolate-Ligated Fe Site of Nitrile Hydratase. Journal of the American Chemical Society, 1998, 120, 5691-5700.	13.7	66
56	A Synthetic Model for the NO-Inactivated Form of Nitrile Hydratase. Journal of the American Chemical Society, 1998, 120, 10996-10997.	13.7	52
57	X-ray Spectroscopy of Nitric Oxide Binding to Iron in Inactive Nitrile Hydratase and a Synthetic Model Compound. Journal of the American Chemical Society, 1998, 120, 9237-9245.	13.7	51
58	Structural Comparison of Five-Coordinate Thiolate-Ligated MII= FeII, CoII, NiII, and ZnIIIons Wrapped in a Chiral Helical Ligand. Inorganic Chemistry, 1998, 37, 5721-5726.	4.0	23
59	Synthesis and structure of a thiolate-ligated Ni cluster which contains an unusual thiolate bridging mode and an exposed Ni site. Inorganica Chimica Acta, 1997, 263, 153-159.	2.4	17
60	A model for the interaction of alcohol with the zinc thiolate site of alcohol dehydrogenase. Inorganic Chemistry, 1995, 34, 5933-5934.	4.0	21
61	A Model for the Low-Spin, Non-Heme, Thiolate-Ligated Iron Site of Nitrile Hydratase. Inorganic Chemistry, 1995, 34, 4517-4518.	4.0	48
62	Metal-Carbon Bonds in Nature. Science, 1995, 270, 587-588.	12.6	13
63	Synthesis and structure of a water-soluble five-coordinate nickel alkanethiolate complex. Inorganic Chemistry, 1994, 33, 7-8.	4.0	39
64	The Structure of a Toroidal, Neutral, Homoleptic Ni(II) Complex with a Chelate Dithiolate Ligand, [Ni6(SCH2CH2CH2S)6] Acta Chemica Scandinavica, 1994, 48, 929-932.	0.7	22
65	Probing the influence of local coordination environment on ligand binding in nickel hydrogenase model complexes. Inorganic Chemistry, 1993, 32, 5868-5877.	4.0	30
66	Nickel-promoted reductive carbon-sulfur bond cleavage: a model for the first step in the reaction promoted by methyl coenzyme M reductase. Inorganic Chemistry, 1993, 32, 1860-1863.	4.0	32
67	Reactivities and biological functions of iron-sulfur clusters. Journal of Cluster Science, 1990, 1, 29-73.	3.3	30
68	Synthesis and reactivity of the first structurally characterized heterobimetallic complex containing an unsupported bridging sulfur atom. Journal of the American Chemical Society, 1989, 111, 1131-1133.	13.7	30
69	Heterometallic clusters: synthesis and reactions of vanadium-iron-sulfur single- and double-cubane clusters and the structure of [V2Fe6S8Cl4(C2H4S2)2]4 Inorganic Chemistry, 1987, 26, 702-711.	4.0	56
70	Comparative electronic properties of vanadium-iron-sulfur and molybdenum-iron-sulfur clusters containing isoelectronic cubane-type [VFe3S4]2+ and [MoFe3S4]3+ cores. Inorganic Chemistry, 1987, 26, 719-724.	4.0	51
71	Structural chemistry of vanadium-iron-sulfur clusters containing the cubane-type [VFe3S4]2+ core. Inorganic Chemistry, 1987, 26, 711-718.	4.0	58
72	[Fe2S2(CO)6]2â^ as a cluster precursor: synthesis and structure of [MoFe3S6(CO)6]2â^ and oxidative decarbonylation to a persulfide-bridged MoFe3S4 double cubane. Polyhedron, 1987, 6, 1445-1456.	2.2	13

Julie A Kovacs

#	Article	IF	CITATIONS
73	Assembly of vanadium-iron-sulfur cubane clusters from mononuclear and linear trinuclear reactants. Journal of the American Chemical Society, 1986, 108, 340-341.	13.7	75
74	Synthesis of a new class of Mo-Fe-S clusters containing the MoS2Fe2 unit. Polyhedron, 1986, 5, 393-398.	2.2	27
75	Persulfide-bridged iron-molybdenum-sulfur clusters of biological relevance: two synthetic routes and the structures of intermediate and product clusters. Journal of the American Chemical Society, 1985, 107, 1784-1786.	13.7	50