
Yolanda Becerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309821/publications.pdf Version: 2024-02-01

3

#	Article	IF	CITATIONS
1	Performance-driven task co-scheduling for MapReduce environments. , 2010, , .		125
2	PyCOMPSs: Parallel computational workflows in Python. International Journal of High Performance Computing Applications, 2017, 31, 66-82.	3.7	88
3	All-optical packet/circuit switching-based data center network for enhanced scalability, latency, and throughput. IEEE Network, 2013, 27, 14-22.	6.9	87
4	Resource-Aware Adaptive Scheduling for MapReduce Clusters. Lecture Notes in Computer Science, 2011, , 187-207.	1.3	87
5	BIGNASim: a NoSQL database structure and analysis portal for nucleic acids simulation data. Nucleic Acids Research, 2016, 44, D272-D278.	14.5	57
6	Energy accounting for shared virtualized environments under DVFS using PMC-based power models. Future Generation Computer Systems, 2012, 28, 457-468.	7.5	35
7	Performance Management of Accelerated MapReduce Workloads in Heterogeneous Clusters. , 2010, , .		34
8	Accurate energy accounting for shared virtualized environments using PMC-based power modeling techniques. , 2010, , .		25
9	ALOJA: A systematic study of Hadoop deployment variables to enable automated characterization of cost-effectiveness. , 2014, , .		20
10	Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 2022, 134, 414-429.	7.5	17
11	Spark deployment and performance evaluation on the MareNostrum supercomputer. , 2015, , .		14
12	A novel SDN enabled hybrid optical packet/circuit switched data centre network: The LICHTNESS approach. , 2014, , .		13
13	Speeding Up Distributed MapReduce Applications Using Hardware Accelerators. , 2009, , .		10
14	Batch Job Profiling and Adaptive Profile Enforcement for Virtualized Environments. , 2009, , .		7
15	Automatic Query Driven Data Modelling in Cassandra. Procedia Computer Science, 2015, 51, 2822-2826.	2.0	7
16	Adaptive MapReduce Scheduling in Shared Environments. , 2014, , .		6
17	D8-tree. , 2016, , .		4

18 Experiences of Using Cassandra for Molecular Dynamics Simulations. , 2015, , .

2

YOLANDA BECERRA

#	Article	IF	CITATIONS
19	ParaView + Alya + D8tree: Integrating High Performance Computing and High Performance Data Analytics. Procedia Computer Science, 2017, 108, 465-474.	2.0	2
20	Exploiting Key-Value Data Stores Scalability for HPC. , 2017, , .		2
21	Evaluating the Benefits of Key-Value Databases for Scientific Applications. Lecture Notes in Computer Science, 2019, , 412-426.	1.3	2
22	Aeneas: A Tool to Enable Applications to Effectively Use Non-relational Databases. Procedia Computer Science, 2013, 18, 2561-2564.	2.0	1
23	Enabling Distributed Key-Value Stores with Low Latency-Impact Snapshot Support. , 2013, , .		1
24	The OTree: Multidimensional Indexing with efficient data Sampling for HPC. , 2019, , .		1
25	Introducing Polyglot-Based Data-Flow Awareness to Time-Series Data Stores. IEEE Access, 2022, 10, 69398-69411.	4.2	1