
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309766/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | proChIPdb: a chromatin immunoprecipitation database for prokaryotic organisms. Nucleic Acids<br>Research, 2022, 50, D1077-D1084.                                                                                                                            | 6.5 | 9         |
| 2  | Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information. BMC Genomics, 2022, 23, 68.                                                                                                 | 1.2 | 2         |
| 3  | Comparative pangenomics: analysis of 12 microbial pathogen pangenomes reveals conserved global structures of genetic and functional diversity. BMC Genomics, 2022, 23, 7.                                                                                   | 1.2 | 22        |
| 4  | Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity. IScience, 2022, 25, 103879.                                                                                                | 1.9 | 7         |
| 5  | Is the kinetome conserved?. Molecular Systems Biology, 2022, 18, e10782.                                                                                                                                                                                    | 3.2 | 6         |
| 6  | System-Level Analysis of Transcriptional and Translational Regulatory Elements in Streptomyces griseus. Frontiers in Bioengineering and Biotechnology, 2022, 10, 844200.                                                                                    | 2.0 | 1         |
| 7  | Machine learning from <i>Pseudomonas aeruginosa</i> transcriptomes identifies independently<br>modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Research,<br>2022, 50, 3658-3672.                                    | 6.5 | 25        |
| 8  | Synthetic 3′-UTR valves for optimal metabolic flux control in <i>Escherichia coli</i> . Nucleic Acids<br>Research, 2022, 50, 4171-4186.                                                                                                                     | 6.5 | 3         |
| 9  | Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured<br>Interplay between Metabolism, Stress Response, and Infection. MSphere, 2022, 7, e0003322.                                                                     | 1.3 | 22        |
| 10 | Systems biology approach to functionally assess the <i>Clostridioides difficile</i> pangenome reveals genetic diversity with discriminatory power. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119396119. | 3.3 | 5         |
| 11 | A systems approach discovers the role and characteristics of seven LysR type transcription factors in Escherichia coli. Scientific Reports, 2022, 12, 7274.                                                                                                 | 1.6 | 5         |
| 12 | Machine-learning from Pseudomonas putida KT2440 transcriptomes reveals its transcriptional regulatory network. Metabolic Engineering, 2022, 72, 297-310.                                                                                                    | 3.6 | 28        |
| 13 | Laboratory evolution of synthetic electron transport system variants reveals a larger metabolic respiratory system and its plasticity. Nature Communications, 2022, 13, .                                                                                   | 5.8 | 8         |
| 14 | iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine<br>learning. Nucleic Acids Research, 2021, 49, D112-D120.                                                                                                          | 6.5 | 67        |
| 15 | Identifying the effect of vancomycin on health care–associated methicillin-resistant<br><i>Staphylococcus aureus</i> strains using bacteriological and physiological media. GigaScience,<br>2021, 10, .                                                     | 3.3 | 5         |
| 16 | Bacterial fitness landscapes stratify based on proteome allocation associated with discrete aero-types. PLoS Computational Biology, 2021, 17, e1008596.                                                                                                     | 1.5 | 14        |
| 17 | MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics. PLoS Computational Biology, 2021, 17, e1008208.                                                                                               | 1.5 | 20        |
| 18 | Pangenome Analytics Reveal Two-Component Systems as Conserved Targets in ESKAPEE Pathogens.<br>MSystems, 2021, 6, .                                                                                                                                         | 1.7 | 24        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Independent component analysis recovers consistent regulatory signals from disparate datasets. PLoS<br>Computational Biology, 2021, 17, e1008647.                                                                   | 1.5 | 27        |
| 20 | Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight, 2021, 6,                                                                                                                 | 2.3 | 39        |
| 21 | Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an<br>Anaerobic Neocallimastigomycota Fungus. MSystems, 2021, 6, .                                                        | 1.7 | 33        |
| 22 | Restoration of fitness lost due to dysregulation of the pyruvate dehydrogenase complex is triggered by ribosomal binding site modifications. Cell Reports, 2021, 35, 108961.                                        | 2.9 | 13        |
| 23 | The quantitative metabolome is shaped by abiotic constraints. Nature Communications, 2021, 12, 3178.                                                                                                                | 5.8 | 15        |
| 24 | Environmental conditions dictate differential evolution of vancomycin resistance in Staphylococcus aureus. Communications Biology, 2021, 4, 793.                                                                    | 2.0 | 18        |
| 25 | Elucidating the Regulatory Elements for Transcription Termination and Posttranscriptional Processing in the Streptomyces clavuligerus Genome. MSystems, 2021, 6, .                                                  | 1.7 | 6         |
| 26 | Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth. PLoS Computational Biology, 2021, 17, e1007817.                                 | 1.5 | 3         |
| 27 | Genomeâ€scale metabolic modeling reveals key features of a minimal gene set. Molecular Systems<br>Biology, 2021, 17, e10099.                                                                                        | 3.2 | 15        |
| 28 | Unraveling the functions of uncharacterized transcription factors in <i>Escherichia coli</i> using ChIP-exo. Nucleic Acids Research, 2021, 49, 9696-9710.                                                           | 6.5 | 30        |
| 29 | Machine Learning of Bacterial Transcriptomes Reveals Responses Underlying Differential Antibiotic<br>Susceptibility. MSphere, 2021, 6, e0044321.                                                                    | 1.3 | 12        |
| 30 | Generation of <i>Pseudomonas putida</i> KT2440 Strains with Efficient Utilization of Xylose and<br>Galactose via Adaptive Laboratory Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>11512-11523. | 3.2 | 32        |
| 31 | Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Communications Biology, 2021, 4, 991.                                                  | 2.0 | 13        |
| 32 | RiboRid: A low cost, advanced, and ultra-efficient method to remove ribosomal RNA for bacterial transcriptomics. PLoS Genetics, 2021, 17, e1009821.                                                                 | 1.5 | 16        |
| 33 | Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in <i>Streptomyces</i> genomes. Natural Product Reports, 2021, 38, 1330-1361.                                    | 5.2 | 35        |
| 34 | Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture.<br>Journal of Industrial Microbiology and Biotechnology, 2021, 48, .                                                    | 1.4 | 29        |
| 35 | DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                  | 3.3 | 45        |
| 36 | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal<br>Thermoacidophile Sulfolobus acidocaldarius. Frontiers in Microbiology, 2021, 12, 753521.                         | 1.5 | 20        |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters. IScience, 2021, 24, 103410.                                     | 1.9 | 2         |
| 38 | <i>Escherichia coli</i> Data-Driven Strain Design Using Aggregated Adaptive Laboratory Evolution<br>Mutational Data. ACS Synthetic Biology, 2021, 10, 3379-3395.                 | 1.9 | 5         |
| 39 | Optimal dimensionality selection for independent component analysis of transcriptomic data. BMC<br>Bioinformatics, 2021, 22, 584.                                                | 1.2 | 34        |
| 40 | Streptomyces as Microbial Chassis for Heterologous Protein Expression. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804295.                                           | 2.0 | 12        |
| 41 | BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree.<br>Nucleic Acids Research, 2020, 48, D402-D406.                                   | 6.5 | 130       |
| 42 | OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone<br>Metabolic States. Molecular Biology and Evolution, 2020, 37, 660-667.          | 3.5 | 52        |
| 43 | Highâ€quality genomeâ€scale metabolic modelling of <i>Pseudomonas putida</i> highlights its broad<br>metabolic capabilities. Environmental Microbiology, 2020, 22, 255-269.      | 1.8 | 127       |
| 44 | Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nature Communications, 2020, 11, 68.               | 5.8 | 74        |
| 45 | Metabolic Systems Analysis of Shock-Induced Endotheliopathy (SHINE) in Trauma. Annals of Surgery, 2020, 272, 1140-1148.                                                          | 2.1 | 23        |
| 46 | Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Protein Science, 2020, 29, 711-722.                     | 3.1 | 4         |
| 47 | A workflow for generating multi-strain genome-scale metabolic models of prokaryotes. Nature<br>Protocols, 2020, 15, 1-14.                                                        | 5.5 | 62        |
| 48 | The Bitome: digitized genomic features reveal fundamental genome organization. Nucleic Acids<br>Research, 2020, 48, 10157-10163.                                                 | 6.5 | 11        |
| 49 | Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.                                                             | 7.7 | 100       |
| 50 | High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies. Frontiers in<br>Microbiology, 2020, 11, 596626.                                                         | 1.5 | 3         |
| 51 | Generation of ionic liquid tolerant <i>Pseudomonas putida</i> KT2440 strains <i>via</i> adaptive<br>laboratory evolution. Green Chemistry, 2020, 22, 5677-5690.                  | 4.6 | 29        |
| 52 | Synthetic cross-phyla gene replacement and evolutionary assimilation of major enzymes. Nature<br>Ecology and Evolution, 2020, 4, 1402-1409.                                      | 3.4 | 13        |
| 53 | Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity. BMC Genomics, 2020, 21, 514.                | 1.2 | 23        |
| 54 | Independent component analysis of E. coli's transcriptome reveals the cellular processes that respond to heterologous gene expression. Metabolic Engineering, 2020, 61, 360-368. | 3.6 | 36        |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | System-level understanding of gene expression and regulation for engineering secondary metabolite production in <i>Streptomyces</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 739-752.                                                | 1.4  | 10        |
| 56 | Systems biology analysis of the Clostridioides difficile core-genome contextualizes<br>microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Npj<br>Systems Biology and Applications, 2020, 6, 31.                        | 1.4  | 15        |
| 57 | Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme<br>turnover numbers. Proceedings of the National Academy of Sciences of the United States of America,<br>2020, 117, 23182-23190.                          | 3.3  | 65        |
| 58 | Reconstructing organisms in silico: genome-scale models and their emerging applications. Nature<br>Reviews Microbiology, 2020, 18, 731-743.                                                                                                                   | 13.6 | 158       |
| 59 | The Expanding Computational Toolbox for Engineering Microbial Phenotypes at the Genome Scale.<br>Microorganisms, 2020, 8, 2050.                                                                                                                               | 1.6  | 12        |
| 60 | Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome.<br>Nature Communications, 2020, 11, 6338.                                                                                                                   | 5.8  | 54        |
| 61 | Genome Sequence Comparison of Staphylococcus aureus TX0117 and a Beta-Lactamase-Cured Derivative Shows Increased Cationic Peptide Resistance Accompanying Mutations in <i>relA</i> and <i>mnaA</i> . Microbiology Resource Announcements, 2020, 9, .          | 0.3  | 2         |
| 62 | Metabolic and genetic basis for auxotrophies in Gram-negative species. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6264-6273.                                                                                 | 3.3  | 39        |
| 63 | Transcriptome and translatome profiles of Streptomyces species in different growth phases.<br>Scientific Data, 2020, 7, 138.                                                                                                                                  | 2.4  | 18        |
| 64 | Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic<br>gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 2020, 18,<br>1548-1556.                                               | 1.9  | 106       |
| 65 | Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical<br>Biosynthesis. Frontiers in Molecular Biosciences, 2020, 7, 87.                                                                                           | 1.6  | 29        |
| 66 | Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules, 2020, 10, 864.                                                                                                             | 1.8  | 9         |
| 67 | Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a<br>Human Commensal and Opportunistic Pathogen. Frontiers in Genetics, 2020, 11, 116.                                                                      | 1.1  | 11        |
| 68 | An atlas of human metabolism. Science Signaling, 2020, 13, .                                                                                                                                                                                                  | 1.6  | 223       |
| 69 | Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Computational Biology, 2020, 16, e1007608.                                                                         | 1.5  | 49        |
| 70 | Revealing 29 sets of independently modulated genes in <i>Staphylococcus aureus</i> , their<br>regulators, and role in key physiological response. Proceedings of the National Academy of Sciences<br>of the United States of America, 2020, 117, 17228-17239. | 3.3  | 60        |
| 71 | Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genetics, 2020, 16, e1008931.                                                                                                                                                 | 1.5  | 43        |
| 72 | Synthesizing Systems Biology Knowledge from Omics Using Genome cale Models. Proteomics, 2020,<br>20, e1900282.                                                                                                                                                | 1.3  | 22        |

BERNHARD O PALSSON

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.                                                                            | 9.4 | 314       |
| 74 | Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Scientific Data, 2020, 7, 55.                                     | 2.4 | 67        |
| 75 | STATR: A simple analysis pipeline of Ribo-Seq in bacteria. Journal of Microbiology, 2020, 58, 217-226.                                                                            | 1.3 | 9         |
| 76 | Iron competition triggers antibiotic biosynthesis in <i>Streptomyces coelicolor</i> during coculture with <i>Myxococcus xanthus</i> . ISME Journal, 2020, 14, 1111-1124.          | 4.4 | 60        |
| 77 | Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes. BMC Bioinformatics, 2020, 21, 162.                         | 1.2 | 5         |
| 78 | Multiplex secretome engineering enhances recombinant protein production and purity. Nature Communications, 2020, 11, 1908.                                                        | 5.8 | 63        |
| 79 | Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant<br>Staphylococcus aureus. MSystems, 2020, 5, .                                    | 1.7 | 8         |
| 80 | Pangenome Flux Balance Analysis Toward Panphenomes. , 2020, , 219-232.                                                                                                            |     | 7         |
| 81 | A biochemically-interpretable machine learning classifier for microbial GWAS. Nature<br>Communications, 2020, 11, 2580.                                                           | 5.8 | 51        |
| 82 | Genome-scale determination of 5´and 3´boundaries of RNA transcripts in Streptomyces genomes.<br>Scientific Data, 2020, 7, 436.                                                    | 2.4 | 6         |
| 83 | Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology (United Kingdom), 2020, 166, 141-148.                                                           | 0.7 | 28        |
| 84 | Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel<br>Relationships. MSystems, 2020, 5, .                                           | 1.7 | 25        |
| 85 | Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in<br>Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2020, 14, e0008728. | 1.3 | 8         |
| 86 | <scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models.<br>Molecular Systems Biology, 2020, 16, e9110.                                     | 3.2 | 178       |
| 87 | Construction of Minimal Genomes and Synthetic Cells. , 2020, , 45-67.                                                                                                             |     | 0         |
| 88 | The Use of In Silico Genome-Scale Models for the Rational Design of Minimal Cells. , 2020, , 141-175.                                                                             |     | 0         |
| 89 | Title is missing!. , 2020, 16, e1007608.                                                                                                                                          |     | 0         |

90 Title is missing!. , 2020, 16, e1007608.

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Title is missing!. , 2020, 16, e1007608.                                                                                                                                                        |     | 0         |
| 92  | Title is missing!. , 2020, 16, e1007608.                                                                                                                                                        |     | 0         |
| 93  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 94  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 95  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 96  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 97  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 98  | Title is missing!. , 2020, 14, e0008728.                                                                                                                                                        |     | 0         |
| 99  | The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 2019, 56, 1-16.                               | 3.6 | 307       |
| 100 | Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14368-14373. | 3.3 | 79        |
| 101 | The Transcription Unit Architecture of Streptomyces lividans TK24. Frontiers in Microbiology, 2019, 10, 2074.                                                                                   | 1.5 | 25        |
| 102 | Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During<br>Adaptive Laboratory Evolution. Frontiers in Microbiology, 2019, 10, 1845.                | 1.5 | 17        |
| 103 | Systems Biology and Pangenome of <i>Salmonella</i> O-Antigens. MBio, 2019, 10, .                                                                                                                | 1.8 | 26        |
| 104 | Estimating Cellular Goals from High-Dimensional Biological Data. , 2019, , .                                                                                                                    |     | 2         |
| 105 | Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of<br><i>Staphylococcus aureus</i> . Applied and Environmental Microbiology, 2019, 85, .       | 1.4 | 21        |
| 106 | Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nature Communications, 2019, 10, 4552.                                               | 5.8 | 116       |
| 107 | Pseudogene repair driven by selection pressure applied in experimental evolution. Nature<br>Microbiology, 2019, 4, 386-389.                                                                     | 5.9 | 21        |
| 108 | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media<br>types. PLoS Computational Biology, 2019, 15, e1006644.                                    | 1.5 | 41        |

BERNHARD O PALSSON

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC Systems Biology, 2019, 13, 2.                                                                                                      | 3.0  | 45        |
| 110 | Primary transcriptome and translatome analysis determines transcriptional and translational<br>regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Research, 2019,<br>47, 6114-6129.                            | 6.5  | 49        |
| 111 | Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS<br>Computational Biology, 2019, 15, e1007066.                                                                                                 | 1.5  | 33        |
| 112 | A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell, 2019, 177, 1649-1661.e9.                                                                                                                            | 13.5 | 227       |
| 113 | BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLoS Computational Biology, 2019, 15, e1006971.                                                                                       | 1.5  | 83        |
| 114 | Characterization of CA-MRSA TCH1516 exposed to nafcillin in bacteriological and physiological media.<br>Scientific Data, 2019, 6, 43.                                                                                                          | 2.4  | 14        |
| 115 | Coupling S-adenosylmethionine–dependent methylation to growth: Design and uses. PLoS Biology, 2019, 17, e2007050.                                                                                                                              | 2.6  | 39        |
| 116 | Enzyme promiscuity shapes adaptation to novel growth substrates. Molecular Systems Biology, 2019, 15, e8462.                                                                                                                                   | 3.2  | 52        |
| 117 | Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nature Communications, 2019, 10, 935.                                                                                                                                      | 5.8  | 114       |
| 118 | The y-ome defines the 35% of <i>Escherichia coli</i> genes that lack experimental evidence of function.<br>Nucleic Acids Research, 2019, 47, 2446-2454.                                                                                        | 6.5  | 117       |
| 119 | Expanding the uses of genomeâ€scale models with protein structures. Molecular Systems Biology, 2019, 15, e8601.                                                                                                                                | 3.2  | 7         |
| 120 | Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute<br>Pseudomonas aeruginosa infection. PLoS Computational Biology, 2019, 15, e1007562.                                                             | 1.5  | 11        |
| 121 | Profiling the effect of nafcillin on HA-MRSA D712 using bacteriological and physiological media.<br>Scientific Data, 2019, 6, 322.                                                                                                             | 2.4  | 8         |
| 122 | Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during<br>naphthoquinone-based aerobic respiration. Proceedings of the National Academy of Sciences of the<br>United States of America, 2019, 116, 25287-25292. | 3.3  | 56        |
| 123 | Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLoS Computational Biology, 2019, 15, e1007525.                                                          | 1.5  | 37        |
| 124 | The Escherichia coli transcriptome mostly consists of independently regulated modules. Nature Communications, 2019, 10, 5536.                                                                                                                  | 5.8  | 161       |
| 125 | Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes. Metabolic Engineering, 2019, 52, 42-56.                                                                                          | 3.6  | 34        |
| 126 | Sugar-stimulated CO2 sequestration by the green microalga Chlorella vulgaris. Science of the Total<br>Environment, 2019, 654, 275-283.                                                                                                         | 3.9  | 31        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Research, 2019, 47, D1164-D1171.                                                                                                       | 6.5 | 93        |
| 128 | Crossâ€compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom<br><i>Phaeodactylum tricornutum</i> . New Phytologist, 2019, 222, 1364-1379.                                                                | 3.5 | 54        |
| 129 | Dataset on economic analysis of mass production of algae in LED-based photobioreactors. Data in<br>Brief, 2019, 22, 137-139.                                                                                                                | 0.5 | 0         |
| 130 | Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces. Journal of Microbiology and Biotechnology, 2019, 29, 667-686.                                                                                             | 0.9 | 64        |
| 131 | Minimal cells, maximal knowledge. ELife, 2019, 8, .                                                                                                                                                                                         | 2.8 | 26        |
| 132 | Title is missing!. , 2019, 15, e1007525.                                                                                                                                                                                                    |     | 0         |
| 133 | Title is missing!. , 2019, 15, e1007525.                                                                                                                                                                                                    |     | 0         |
| 134 | Title is missing!. , 2019, 15, e1007525.                                                                                                                                                                                                    |     | 0         |
| 135 | Title is missing!. , 2019, 15, e1007525.                                                                                                                                                                                                    |     | 0         |
| 136 | Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature<br>Biotechnology, 2018, 36, 272-281.                                                                                                                 | 9.4 | 520       |
| 137 | Modeling the multi-scale mechanisms of macromolecular resource allocation. Current Opinion in Microbiology, 2018, 45, 8-15.                                                                                                                 | 2.3 | 46        |
| 138 | Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP.<br>Nucleic Acids Research, 2018, 46, 2901-2917.                                                                                               | 6.5 | 62        |
| 139 | Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance. Scientific Reports, 2018, 8, 2215.                                                                 | 1.6 | 28        |
| 140 | ssbio: a Python framework for structural systems biology. Bioinformatics, 2018, 34, 2155-2157.                                                                                                                                              | 1.8 | 36        |
| 141 | Quantitative -omic data empowers bottom-up systems biology. Current Opinion in Biotechnology, 2018, 51, 130-136.                                                                                                                            | 3.3 | 28        |
| 142 | Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 222-227. | 3.3 | 70        |
| 143 | Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions. BMC Systems Biology, 2018, 12, 25.                                         | 3.0 | 63        |
| 144 | Systems biology as an emerging paradigm in transfusion medicine. BMC Systems Biology, 2018, 12, 31.                                                                                                                                         | 3.0 | 12        |

9

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | High-Level dCas9 Expression Induces Abnormal Cell Morphology in <i>Escherichia coli</i> . ACS<br>Synthetic Biology, 2018, 7, 1085-1094.                                                                                           | 1.9 | 147       |
| 146 | Reframing gene essentiality in terms of adaptive flexibility. BMC Systems Biology, 2018, 12, 143.                                                                                                                                 | 3.0 | 11        |
| 147 | Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome<br>Samples From a Crohn's Disease Patient. Frontiers in Microbiology, 2018, 9, 2559.                                               | 1.5 | 37        |
| 148 | Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells<br>Using Targeted Genome Editing. ACS Synthetic Biology, 2018, 7, 2867-2878.                                                      | 1.9 | 39        |
| 149 | Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nature Communications, 2018, 9, 5252.                                                                    | 5.8 | 151       |
| 150 | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates. Nature Communications, 2018, 9, 5270.                                                                                        | 5.8 | 16        |
| 151 | Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale<br>workflow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>11096-11101.              | 3.3 | 44        |
| 152 | Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11339-11344.                   | 3.3 | 30        |
| 153 | Escher-FBA: a web application for interactive flux balance analysis. BMC Systems Biology, 2018, 12, 84.                                                                                                                           | 3.0 | 44        |
| 154 | Estimating Metabolic Equilibrium Constants: Progress and Future Challenges. Trends in Biochemical Sciences, 2018, 43, 960-969.                                                                                                    | 3.7 | 15        |
| 155 | Network-level allosteric effects are elucidated by detailing how ligand-binding events modulate utilization of catalytic potentials. PLoS Computational Biology, 2018, 14, e1006356.                                              | 1.5 | 3         |
| 156 | Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications, 2018, 9, 4306.                                                   | 5.8 | 126       |
| 157 | Gapless, Unambiguous Genome Sequence for Escherichia coli C, a Workhorse of Industrial Biology.<br>Microbiology Resource Announcements, 2018, 7, .                                                                                | 0.3 | 3         |
| 158 | Identification of growth-coupled production strains considering protein costs and kinetic variability. Metabolic Engineering Communications, 2018, 7, e00080.                                                                     | 1.9 | 19        |
| 159 | Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nature Communications, 2018, 9, 3771.                                                                             | 5.8 | 109       |
| 160 | Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nature Communications, 2018, 9, 3796.                                                                                       | 5.8 | 59        |
| 161 | Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial<br>Perturbation of the Transcriptome. Frontiers in Microbiology, 2018, 9, 1793.                                              | 1.5 | 23        |
| 162 | Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of<br>Escherichia coli requires synchronized and counterintuitive genetic changes. Metabolic Engineering,<br>2018, 48, 82-93. | 3.6 | 38        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in<br>Escherichia coli pgi Knockout Evolutions. Applied and Environmental Microbiology, 2018, 84, .                           | 1.4 | 22        |
| 164 | Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC Systems Biology, 2018, 12, 66.                        | 3.0 | 39        |
| 165 | iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE. Frontiers in Genetics, 2018, 9, 121.                                                                         | 1.1 | 40        |
| 166 | The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct Genomic<br>Arrangements That Delineate Genomic Virulence Factor Signatures. Frontiers in Microbiology, 2018, 9,<br>1082.                       | 1.5 | 26        |
| 167 | COBRAme: A computational framework for genome-scale models of metabolism and gene expression.<br>PLoS Computational Biology, 2018, 14, e1006302.                                                                           | 1.5 | 123       |
| 168 | Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655.<br>Nucleic Acids Research, 2018, 46, 10682-10696.                                                                           | 6.5 | 65        |
| 169 | A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating<br>high-throughput-generated binding data into RegulonDB version 10.0. BMC Biology, 2018, 16, 91.                                 | 1.7 | 42        |
| 170 | Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific<br>differences in nutrient essentiality and drug targeting. PLoS Computational Biology, 2018, 14, e1005895.                 | 1.5 | 24        |
| 171 | ChIP-exo interrogation of Crp, DNA, and RNAP holoenzyme interactions. PLoS ONE, 2018, 13, e0197272.                                                                                                                        | 1.1 | 20        |
| 172 | Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite<br>phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metabolic Engineering,<br>2018, 48, 233-242. | 3.6 | 43        |
| 173 | Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.<br>Biophysical Journal, 2018, 114, 2691-2702.                                                                               | 0.2 | 36        |
| 174 | Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution.<br>Biochemical Journal, 2018, 475, 2225-2240.                                                                        | 1.7 | 20        |
| 175 | Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for<br>Bacterial Invasion. MBio, 2017, 8, .                                                                                     | 1.8 | 36        |
| 176 | Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Scientific Reports, 2017, 7, 41241.                                                                                                    | 1.6 | 87        |
| 177 | Integrated Regulatory and Metabolic Networks of the Marine Diatom <i>Phaeodactylum<br/>tricornutum</i> Predict the Response to Rising CO <sub>2</sub> Levels. MSystems, 2017, 2, .                                         | 1.7 | 40        |
| 178 | A Model for Designing Adaptive Laboratory Evolution Experiments. Applied and Environmental Microbiology, 2017, 83, .                                                                                                       | 1.4 | 71        |
| 179 | Reliable and efficient solution of genome-scale models of Metabolism and macromolecular<br>Expression. Scientific Reports, 2017, 7, 40863.                                                                                 | 1.6 | 30        |
| 180 | Machine learning in computational biology to accelerate high-throughput protein expression.<br>Bioinformatics, 2017, 33, 2487-2495.                                                                                        | 1.8 | 8         |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic<br>Adaptive Strategies. Applied and Environmental Microbiology, 2017, 83, .                                                                              | 1.4 | 76        |
| 182 | Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Scientific Reports, 2017, 7, 2181.                                                      | 1.6 | 35        |
| 183 | Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Scientific Reports, 2017, 7, 46249.                                                                                                         | 1.6 | 121       |
| 184 | Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metabolic Engineering, 2017, 39, 220-227.                                                                                                          | 3.6 | 34        |
| 185 | Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metabolic Engineering, 2017, 44, 100-107.                                                                                           | 3.6 | 59        |
| 186 | Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11548-11553.                                                         | 3.3 | 79        |
| 187 | iML1515, a knowledgebase that computes Escherichia coli traits. Nature Biotechnology, 2017, 35,<br>904-908.                                                                                                                                                | 9.4 | 425       |
| 188 | Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. Journal of Biological Chemistry, 2017, 292, 19556-19564.                                                                     | 1.6 | 45        |
| 189 | A Padawan Programmer's Guide to Developing Software Libraries. Cell Systems, 2017, 5, 431-437.                                                                                                                                                             | 2.9 | 14        |
| 190 | Mannose and fructose metabolism in red blood cells during cold storage in SAGM. Transfusion, 2017, 57, 2665-2676.                                                                                                                                          | 0.8 | 14        |
| 191 | Global transcriptional regulatory network for <i>Escherichia coli</i> robustly connects gene<br>expression to transcription factor activities. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, 10286-10291. | 3.3 | 89        |
| 192 | Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune<br>Function. Cell Host and Microbe, 2017, 22, 757-765.e3.                                                                                              | 5.1 | 178       |
| 193 | Citrate metabolism in red blood cells stored in additive solutionâ€3. Transfusion, 2017, 57, 325-336.                                                                                                                                                      | 0.8 | 93        |
| 194 | The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved<br>Escherichia coli. Microbiological Research, 2017, 194, 47-52.                                                                                    | 2.5 | 5         |
| 195 | Metabolic Models of Protein Allocation Call for the Kinetome. Cell Systems, 2017, 5, 538-541.                                                                                                                                                              | 2.9 | 71        |
| 196 | Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells. PLoS Computational Biology, 2017, 13, e1005424.                                                                                                    | 1.5 | 12        |
| 197 | Topological and kinetic determinants of the modal matrices of dynamic models of metabolism. PLoS<br>ONE, 2017, 12, e0189880.                                                                                                                               | 1.1 | 1         |
| 198 | Utilizing biomarkers to forecast quantitative metabolite concentration profiles in human red blood cells. , 2017, , .                                                                                                                                      |     | 2         |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | solveME: fast and reliable solution of nonlinear ME models. BMC Bioinformatics, 2016, 17, 391.                                                                                                                                                  | 1.2 | 39        |
| 200 | Evaluation of rate law approximations in bottom-up kinetic models of metabolism. BMC Systems<br>Biology, 2016, 10, 40.                                                                                                                          | 3.0 | 26        |
| 201 | Quantification and Classification of E. coli Proteome Utilization and Unused Protein Costs across Environments. PLoS Computational Biology, 2016, 12, e1004998.                                                                                 | 1.5 | 100       |
| 202 | A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on<br>Drug Responses in Human Erythrocyte Metabolism. PLoS Computational Biology, 2016, 12, e1005039.                                            | 1.5 | 12        |
| 203 | What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.<br>PLoS Neglected Tropical Diseases, 2016, 10, e0004403.                                                                                       | 1.3 | 253       |
| 204 | Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology. PLoS ONE, 2016, 11, e0151130.                                                                                                      | 1.1 | 54        |
| 205 | Cenome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom. PLoS ONE, 2016, 11, e0155038.                                                                                                                             | 1.1 | 104       |
| 206 | Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion, 2016, 56, 852-862.                                                                   | 0.8 | 105       |
| 207 | Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic<br>modeling and essential gene analysis. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, E8344-E8353. | 3.3 | 113       |
| 208 | A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Systems, 2016, 3, 434-443.e8.                                                                                                                            | 2.9 | 205       |
| 209 | What do cells actually want?. Genome Biology, 2016, 17, 110.                                                                                                                                                                                    | 3.8 | 18        |
| 210 | Principles of proteome allocation are revealed using proteomic data and genome-scale models.<br>Scientific Reports, 2016, 6, 36734.                                                                                                             | 1.6 | 31        |
| 211 | Characterizing Strain Variation in Engineered E.Âcoli Using a Multi-Omics-Based Workflow. Cell<br>Systems, 2016, 2, 335-346.                                                                                                                    | 2.9 | 73        |
| 212 | Biomarkers defining the metabolic age of red blood cells during cold storage. Blood, 2016, 128, e43-e50.                                                                                                                                        | 0.6 | 115       |
| 213 | Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Systems, 2016, 3, 238-251.e12.                                                                                        | 2.9 | 124       |
| 214 | Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion, 2016, 56, 2538-2547.                                                                                                                                 | 0.8 | 39        |
| 215 | Sharing and community curation of mass spectrometry data with Global Natural Products Social<br>Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.                                                                                  | 9.4 | 2,802     |
| 216 | An Organic Anion Transporter 1 (OAT1)-centered Metabolic Network. Journal of Biological Chemistry,<br>2016, 291, 19474-19486.                                                                                                                   | 1.6 | 39        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Multi-omic data integration enables discovery of hidden biological regularities. Nature<br>Communications, 2016, 7, 13091.                                                                                                   | 5.8  | 141       |
| 218 | Systems biology of the structural proteome. BMC Systems Biology, 2016, 10, 26.                                                                                                                                               | 3.0  | 46        |
| 219 | Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale<br>Mechanism of Adaptive Evolution. Cell Systems, 2016, 2, 260-271.                                                        | 2.9  | 107       |
| 220 | Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale.<br>Analytical Chemistry, 2016, 88, 3844-3852.                                                                             | 3.2  | 34        |
| 221 | Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow. Biotechnology Advances, 2016, 34, 621-633.                                                          | 6.0  | 40        |
| 222 | MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications. Analytical Chemistry, 2016, 88, 1362-1370. | 3.2  | 48        |
| 223 | Solving Puzzles With Missing Pieces: The Power of Systems Biology. Proceedings of the IEEE, 2016, 104, 2-7.                                                                                                                  | 16.4 | 17        |
| 224 | BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic<br>Acids Research, 2016, 44, D515-D522.                                                                                      | 6.5  | 746       |
| 225 | Metabolic Analysis of Red Blood Cells Stored at High Temperature. Blood, 2016, 128, 3848-3848.                                                                                                                               | 0.6  | 0         |
| 226 | Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations. Scientific Reports, 2015, 5, 16025.                                                          | 1.6  | 19        |
| 227 | Do genomeâ€scale models need exact solvers or clearer standards?. Molecular Systems Biology, 2015, 11,<br>831.                                                                                                               | 3.2  | 68        |
| 228 | SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks. BMC Systems Biology, 2015, 9, 68.                                                                                                   | 3.0  | 27        |
| 229 | A streamlined ribosome profiling protocol for the characterization of microorganisms.<br>BioTechniques, 2015, 58, 329-32.                                                                                                    | 0.8  | 33        |
| 230 | Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological<br>Pathways. PLoS Computational Biology, 2015, 11, e1004321.                                                           | 1.5  | 344       |
| 231 | Using Genome-scale Models to Predict Biological Capabilities. Cell, 2015, 161, 971-987.                                                                                                                                      | 13.5 | 590       |
| 232 | Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and<br>Identification. Analytical Chemistry, 2015, 87, 1137-1144.                                                             | 3.2  | 245       |
| 233 | Multidimensional Analytical Approach Based on UHPLC-UV-Ion Mobility-MS for the Screening of Natural Pigments. Analytical Chemistry, 2015, 87, 2593-2599.                                                                     | 3.2  | 50        |
| 234 | Model-driven discovery of underground metabolic functions in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 929-934.                                  | 3.3  | 82        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Next-generation genome-scale models for metabolic engineering. Current Opinion in Biotechnology, 2015, 35, 23-29.                                                                                                                    | 3.3 | 144       |
| 236 | Computing the functional proteome: recent progress and future prospects for genome-scale models.<br>Current Opinion in Biotechnology, 2015, 34, 125-134.                                                                             | 3.3 | 59        |
| 237 | Metabolomic analysis of platelets during storage: a comparison between apheresis―and buffy coat–derived platelet concentrates. Transfusion, 2015, 55, 301-313.                                                                       | 0.8 | 54        |
| 238 | A pH and solvent optimized reverse-phase ion-paring-LC–MS/MS method that leverages multiple<br>scan-types for targeted absolute quantification of intracellular metabolites. Metabolomics, 2015, 11,<br>1338-1350.                   | 1.4 | 42        |
| 239 | Decoding the jargon of bottomâ€up metabolic systems biology. BioEssays, 2015, 37, 588-591.                                                                                                                                           | 1.2 | 12        |
| 240 | How to set up collaborations between academia and industrial biotech companies. Nature<br>Biotechnology, 2015, 33, 237-240.                                                                                                          | 9.4 | 23        |
| 241 | Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis. Nature Communications, 2015, 6, 7101.                                                                           | 5.8 | 41        |
| 242 | Systems biology definition of the core proteome of metabolism and expression is consistent with<br>high-throughput data. Proceedings of the National Academy of Sciences of the United States of<br>America, 2015, 112, 10810-10815. | 3.3 | 42        |
| 243 | Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655. Cell Reports, 2015, 12, 1289-1299.                                                          | 2.9 | 174       |
| 244 | The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids<br>Research, 2015, 43, 3079-3088.                                                                                                      | 6.5 | 29        |
| 245 | Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nature Communications, 2015, 6, 7970.                                                    | 5.8 | 87        |
| 246 | Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. Cell Systems, 2015, 1, 283-292.                                                                                                 | 2.9 | 92        |
| 247 | Fast Swinnex filtration (FSF): a fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media. Metabolomics, 2015, 11, 198-209.                                              | 1.4 | 28        |
| 248 | Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of<br>Escherichia coli K-12 MG1655 on Glucose Minimal Medium. Applied and Environmental Microbiology,<br>2015, 81, 17-30.                       | 1.4 | 235       |
| 249 | Biochemical Characterization of Human Gluconokinase and the Proposed Metabolic Impact of<br>Gluconic Acid as Determined by Constraint Based Metabolic Network Analysis. PLoS ONE, 2014, 9,<br>e98760.                                | 1.1 | 28        |
| 250 | Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genetics, 2014, 10, e1004264.                                                                                                                        | 1.5 | 67        |
| 251 | A Systems Approach to Predict Oncometabolites via Context-Specific Genome-Scale Metabolic<br>Networks. PLoS Computational Biology, 2014, 10, e1003837.                                                                               | 1.5 | 63        |
| 252 | Minimal metabolic pathway structure is consistent with associated biomolecular interactions.<br>Molecular Systems Biology, 2014, 10, 737.                                                                                            | 3.2 | 41        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale. BMC Systems Biology, 2014, 8, 110.                                                                                     | 3.0 | 81        |
| 254 | Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 2014, 32, 255-268.                                                                                          | 6.0 | 199       |
| 255 | A modelâ€driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in <i>E.<br/>coli</i> Kâ€12 MG1655 that is biochemically and thermodynamically consistent. Biotechnology and<br>Bioengineering, 2014, 111, 803-815. | 1.7 | 53        |
| 256 | Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biology, 2014, 12, 4.                                                                                                     | 1.7 | 111       |
| 257 | Engineering synergy in biotechnology. Nature Chemical Biology, 2014, 10, 319-322.                                                                                                                                                          | 3.9 | 147       |
| 258 | Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Analytical Chemistry, 2014, 86, 3985-3993.                                                                                                             | 3.2 | 279       |
| 259 | Optimizing genome-scale network reconstructions. Nature Biotechnology, 2014, 32, 447-452.                                                                                                                                                  | 9.4 | 185       |
| 260 | Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nature Communications, 2014, 5, 3233.                                                                                    | 5.8 | 80        |
| 261 | Constraint-based models predict metabolic and associated cellular functions. Nature Reviews Genetics, 2014, 15, 107-120.                                                                                                                   | 7.7 | 714       |
| 262 | Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metabolic Engineering, 2014, 25, 140-158.                                                                 | 3.6 | 152       |
| 263 | Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive<br>Mechanisms and Novel Mutations. Molecular Biology and Evolution, 2014, 31, 2647-2662.                                                        | 3.5 | 145       |
| 264 | Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nature Communications, 2014, 5, 4910.                                                                           | 5.8 | 241       |
| 265 | Predicting microbial growth. Science, 2014, 344, 1448-1449.                                                                                                                                                                                | 6.0 | 35        |
| 266 | Comprehensive metabolomic study of platelets reveals the expression of discrete metabolic phenotypes during storage. Transfusion, 2014, 54, 2911-2923.                                                                                     | 0.8 | 61        |
| 267 | Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31, 759-765.                                                                                        | 9.4 | 340       |
| 268 | Genomeâ€scale models of metabolism and gene expression extend and refine growth phenotype prediction. Molecular Systems Biology, 2013, 9, 693.                                                                                             | 3.2 | 411       |
| 269 | Antibacterial mechanisms identified through structural systems pharmacology. BMC Systems Biology, 2013, 7, 102.                                                                                                                            | 3.0 | 23        |
| 270 | COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 2013, 7, 74.                                                                                                                                       | 3.0 | 973       |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Basic and applied uses of genomeâ€scale metabolic network reconstructions of <i>Escherichia coli</i> .<br>Molecular Systems Biology, 2013, 9, 661.                                                                                                                   | 3.2 | 290       |
| 272 | Reconstruction of Genome-Scale Metabolic Networks. , 2013, , 229-250.                                                                                                                                                                                                |     | 1         |
| 273 | Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting<br>diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 2013, 97, 2395-2403.                                                        | 1.7 | 227       |
| 274 | A community-driven global reconstruction of human metabolism. Nature Biotechnology, 2013, 31, 419-425.                                                                                                                                                               | 9.4 | 920       |
| 275 | Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes. Molecular BioSystems, 2013, 9, 1522.                                                                                                                       | 2.9 | 49        |
| 276 | Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks. Nature Communications, 2013, 4, 1755.                                                                                                        | 5.8 | 15        |
| 277 | Modeling Mycobacterium tuberculosis H37Rv In Silico. , 2013, , 1-19.                                                                                                                                                                                                 |     | Ο         |
| 278 | Analysis of omics data with genome-scale models of metabolism. Molecular BioSystems, 2013, 9, 167-174.                                                                                                                                                               | 2.9 | 176       |
| 279 | Structural Systems Biology Evaluation of Metabolic Thermotolerance in <i>Escherichia coli</i> .<br>Science, 2013, 340, 1220-1223.                                                                                                                                    | 6.0 | 111       |
| 280 | The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Systems Biology, 2013, 7, 95.                                                                                 | 3.0 | 65        |
| 281 | The COMBREX Project: Design, Methodology, and Initial Results. PLoS Biology, 2013, 11, e1001638.                                                                                                                                                                     | 2.6 | 54        |
| 282 | MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2611-20.                                                                                        | 3.3 | 250       |
| 283 | Reconciling a <i>Salmonella enterica</i> metabolic model with experimental data confirms that overexpression of the glyoxylate shunt can rescue a lethal <i>ppc</i> deletion mutant. FEMS Microbiology Letters, 2013, 342, 62-69.                                    | 0.7 | 16        |
| 284 | Genome-scale metabolic reconstructions of multiple <i>Escherichia coli</i> strains highlight<br>strain-specific adaptations to nutritional environments. Proceedings of the National Academy of<br>Sciences of the United States of America, 2013, 110, 20338-20343. | 3.3 | 270       |
| 285 | Multispecific Drug Transporter <i>Slc22a8</i> ( <i>Oat3</i> ) Regulates Multiple Metabolic and Signaling Pathways. Drug Metabolism and Disposition, 2013, 41, 1825-1834.                                                                                             | 1.7 | 62        |
| 286 | Modelâ€driven multiâ€omic data analysis elucidates metabolic immunomodulators of macrophage<br>activation. Molecular Systems Biology, 2012, 8, 558.                                                                                                                  | 3.2 | 142       |
| 287 | UPLC-UV-MSE analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Analytical and Bioanalytical Chemistry, 2012, 404, 3145-3154.                                                                                       | 1.9 | 67        |
| 288 | Proteomic Analysis of Chinese Hamster Ovary Cells. Journal of Proteome Research, 2012, 11, 5265-5276.                                                                                                                                                                | 1.8 | 168       |

BERNHARD O PALSSON

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods.<br>Nature Reviews Microbiology, 2012, 10, 291-305.                                                                                             | 13.6 | 721       |
| 290 | Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 2012, 161, 242-249.                                                                         | 1.9  | 129       |
| 291 | Network Context and Selection in the Evolution to Enzyme Specificity. Science, 2012, 337, 1101-1104.                                                                                                                                              | 6.0  | 249       |
| 292 | Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2678-2683.                                           | 3.3  | 266       |
| 293 | Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features. BMC Genomics, 2012, 13, 679.                                                                                     | 1.2  | 34        |
| 294 | Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling. BMC Systems Biology, 2012, 6, 9.                                                                                                                  | 3.0  | 30        |
| 295 | Studying Salmonellae and Yersiniae Host–Pathogen Interactions Using Integrated â€~Omics and Modeling. Current Topics in Microbiology and Immunology, 2012, 363, 21-41.                                                                            | 0.7  | 10        |
| 296 | In silico method for modelling metabolism and gene product expression at genome scale. Nature Communications, 2012, 3, 929.                                                                                                                       | 5.8  | 238       |
| 297 | Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS ONE, 2012, 7, e45635.                                                                                         | 1.1  | 100       |
| 298 | A road map for the development of community systems (CoSy) biology. Nature Reviews Microbiology, 2012, 10, 366-372.                                                                                                                               | 13.6 | 135       |
| 299 | Using the reconstructed genomeâ€scale human metabolic network to study physiology and pathology.<br>Journal of Internal Medicine, 2012, 271, 131-141.                                                                                             | 2.7  | 98        |
| 300 | Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid<br>chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Analytical and<br>Bioanalytical Chemistry, 2012, 402, 1183-1198. | 1.9  | 74        |
| 301 | Exploiting Adaptive Laboratory Evolution of Streptomyces clavuligerus for Antibiotic Discovery and Overproduction. PLoS ONE, 2012, 7, e33727.                                                                                                     | 1.1  | 72        |
| 302 | Exploiting Adaptive Laboratory Evolution of Streptomyces clavuligerus for Antibiotic Discovery and<br>Overproduction. FASEB Journal, 2012, 26, lb123.                                                                                             | 0.2  | 0         |
| 303 | Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models. Biophysical<br>Journal, 2011, 100, 544-553.                                                                                                                   | 0.2  | 203       |
| 304 | Cumulative Number of Cell Divisions as a Meaningful Timescale for Adaptive Laboratory Evolution of Escherichia coli. PLoS ONE, 2011, 6, e26172.                                                                                                   | 1.1  | 50        |
| 305 | Microbial laboratory evolution in the era of genomeâ€scale science. Molecular Systems Biology, 2011, 7, 509.                                                                                                                                      | 3.2  | 245       |
| 306 | Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols, 2011, 6, 1290-1307.                                                                                                        | 5.5  | 1,408     |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Metabolic network reconstruction of <i>Chlamydomonas</i> offers insight into lightâ€driven algal<br>metabolism. Molecular Systems Biology, 2011, 7, 518.                                                                      | 3.2  | 264       |
| 308 | The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nature Biotechnology, 2011, 29, 735-741.                                                                                                                | 9.4  | 699       |
| 309 | A Systems Biology Approach to the Evolution of Codon Use Pattern. Nature Precedings, 2011, , .                                                                                                                                | 0.1  | 2         |
| 310 | Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella. Frontiers in Microbiology, 2011, 2, 121.                                                                                              | 1.5  | 18        |
| 311 | A câ€ŧype cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in <i>Geobacter sulfurreducens</i> revealed by adaptive evolution. Environmental Microbiology, 2011, 13, 13-23. | 1.8  | 89        |
| 312 | In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 2011, 9, 39-50.                                                            | 13.6 | 128       |
| 313 | Deciphering the regulatory codes in bacterial genomes. Biotechnology Journal, 2011, 6, 1052-1063.                                                                                                                             | 1.8  | 9         |
| 314 | iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Systems Biology, 2011, 5, 110.                               | 3.0  | 89        |
| 315 | An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC Systems Biology, 2011, 5, 163.                                                                                        | 3.0  | 38        |
| 316 | A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology.<br>BMC Systems Biology, 2011, 5, 180.                                                                                       | 3.0  | 166       |
| 317 | A community effort towards a knowledge-base and mathematical model of the human pathogen<br>Salmonella Typhimurium LT2. BMC Systems Biology, 2011, 5, 8.                                                                      | 3.0  | 128       |
| 318 | An Experimentally Validated Genome-Scale Metabolic Reconstruction of <i>Klebsiella pneumoniae</i> MGH 78578, <i>i</i> YL1228. Journal of Bacteriology, 2011, 193, 1710-1717.                                                  | 1.0  | 132       |
| 319 | Sensitive and accurate identification of protein-DNA binding events in ChIP-chip assays using higher order derivative analysis. Nucleic Acids Research, 2011, 39, 1656-1665.                                                  | 6.5  | 5         |
| 320 | The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2011, 39, 6456-6464.                                                                                                                                | 6.5  | 98        |
| 321 | Linkage of Organic Anion Transporter-1 to Metabolic Pathways through Integrated "Omics―driven<br>Network and Functional Analysis. Journal of Biological Chemistry, 2011, 286, 31522-31531.                                    | 1.6  | 57        |
| 322 | Functional and Metabolic Effects of Adaptive Glycerol Kinase (GLPK) Mutants in Escherichia coli.<br>Journal of Biological Chemistry, 2011, 286, 23150-23159.                                                                  | 1.6  | 56        |
| 323 | A comprehensive genomeâ€scale reconstruction of <i>Escherichia coli</i> metabolism—2011. Molecular<br>Systems Biology, 2011, 7, 535.                                                                                          | 3.2  | 917       |
| 324 | Adaptive Laboratory Evolution. Microbe Magazine, 2011, 6, 69-74.                                                                                                                                                              | 0.4  | 18        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Insight into human alveolar macrophage and <i>M. tuberculosis</i> interactions via metabolic reconstructions. Molecular Systems Biology, 2010, 6, 422.                                                                                  | 3.2 | 246       |
| 326 | Systematizing the generation of missing metabolic knowledge. Biotechnology and Bioengineering, 2010, 107, 403-412.                                                                                                                      | 1.7 | 130       |
| 327 | Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metabolic Engineering, 2010, 12, 173-186.                                                                                          | 3.6 | 221       |
| 328 | What is flux balance analysis?. Nature Biotechnology, 2010, 28, 245-248.                                                                                                                                                                | 9.4 | 3,233     |
| 329 | Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nature<br>Biotechnology, 2010, 28, 1279-1285.                                                                                           | 9.4 | 246       |
| 330 | The challenges of integrating multi-omic data sets. Nature Chemical Biology, 2010, 6, 787-789.                                                                                                                                          | 3.9 | 154       |
| 331 | A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 2010, 5, 93-121.                                                                                                                      | 5.5 | 1,568     |
| 332 | Towards genome-scale signalling-network reconstructions. Nature Reviews Genetics, 2010, 11, 297-307.                                                                                                                                    | 7.7 | 111       |
| 333 | Adaptive Evolution of <i>Escherichia coli</i> K-12 MG1655 during Growth on a Nonnative Carbon<br>Source, <scp>l</scp> -1,2-Propanediol. Applied and Environmental Microbiology, 2010, 76, 4158-4168.                                    | 1.4 | 140       |
| 334 | RNA polymerase mutants found through adaptive evolution reprogram <i>Escherichia coli</i> for optimal growth in minimal media. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20500-20505. | 3.3 | 219       |
| 335 | Omic data from evolved <i>E. coli</i> are consistent with computed optimal growth from genomeâ€scale models. Molecular Systems Biology, 2010, 6, 390.                                                                                   | 3.2 | 615       |
| 336 | Deletion of Genes Encoding Cytochrome Oxidases and Quinol Monooxygenase Blocks the<br>Aerobic-Anaerobic Shift in <i>Escherichia coli</i> K-12 MG1655. Applied and Environmental<br>Microbiology, 2010, 76, 6529-6540.                   | 1.4 | 49        |
| 337 | Topping Off a Multiscale Balancing Act. Science, 2010, 330, 1058-1059.                                                                                                                                                                  | 6.0 | 1         |
| 338 | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network<br>Model. PLoS Computational Biology, 2010, 6, e1000938.                                                                              | 1.5 | 183       |
| 339 | Genetic Basis of Growth Adaptation of Escherichia coli after Deletion of pgi, a Major Metabolic Gene.<br>PLoS Genetics, 2010, 6, e1001186.                                                                                              | 1.5 | 121       |
| 340 | Functional Characterization of Alternate Optimal Solutions of Escherichia coli's Transcriptional and<br>Translational Machinery. Biophysical Journal, 2010, 98, 2072-2081.                                                              | 0.2 | 58        |
| 341 | Structural and operational complexity of the <i>Geobacter sulfurreducens</i> genome. Genome Research, 2010, 20, 1304-1311.                                                                                                              | 2.4 | 75        |
| 342 | The biomass objective function. Current Opinion in Microbiology, 2010, 13, 344-349.                                                                                                                                                     | 2.3 | 540       |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Reconstruction annotation jamborees: a community approach to systems biology. Molecular Systems<br>Biology, 2010, 6, 361.                                                                                                                | 3.2  | 54        |
| 344 | Use of Randomized Sampling for Analysis of Metabolic Networks. Journal of Biological Chemistry, 2009, 284, 5457-5461.                                                                                                                    | 1.6  | 221       |
| 345 | Genome-scale network analysis of imprinted human metabolic genes. Epigenetics, 2009, 4, 43-46.                                                                                                                                           | 1.3  | 20        |
| 346 | Identification of Potential Pathway Mediation Targets in Toll-like Receptor Signaling. PLoS<br>Computational Biology, 2009, 5, e1000292.                                                                                                 | 1.5  | 52        |
| 347 | Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A<br>Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization. PLoS<br>Computational Biology, 2009, 5, e1000312. | 1.5  | 161       |
| 348 | Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System. PLoS<br>Computational Biology, 2009, 5, e1000403.                                                                                              | 1.5  | 34        |
| 349 | Gene Expression Profiling and the Use of Genome-Scale In Silico Models of <i>Escherichia coli</i> for<br>Analysis: Providing Context for Content. Journal of Bacteriology, 2009, 191, 3437-3444.                                         | 1.0  | 51        |
| 350 | Understanding human metabolic physiology: a genome-to-systems approach. Trends in Biotechnology, 2009, 27, 37-44.                                                                                                                        | 4.9  | 44        |
| 351 | Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation. BMC Systems Biology, 2009, 3, 30.                                                                                          | 3.0  | 41        |
| 352 | Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC<br>Systems Biology, 2009, 3, 37.                                                                                                            | 3.0  | 391       |
| 353 | Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Systems Biology, 2009, 3, 38.                                                                                            | 3.0  | 140       |
| 354 | Using in silico models to simulate dual perturbation experiments: procedure development and interpretation of outcomes. BMC Systems Biology, 2009, 3, 44.                                                                                | 3.0  | 10        |
| 355 | Metabolic systems biology. FEBS Letters, 2009, 583, 3900-3904.                                                                                                                                                                           | 1.3  | 83        |
| 356 | The transcription unit architecture of the Escherichia coli genome. Nature Biotechnology, 2009, 27, 1043-1049.                                                                                                                           | 9.4  | 251       |
| 357 | Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 2009, 7, 129-143.                                                                                                                                 | 13.6 | 797       |
| 358 | Three-Dimensional Structural View of the Central Metabolic Network of <i>Thermotoga maritima</i> .<br>Science, 2009, 325, 1544-1549.                                                                                                     | 6.0  | 176       |
| 359 | Applications of genomeâ€scale metabolic reconstructions. Molecular Systems Biology, 2009, 5, 320.                                                                                                                                        | 3.2  | 759       |
| 360 | Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Applied Microbiology and Biotechnology, 2008, 80, 849-862.                                                              | 1.7  | 161       |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Network-based prediction of human tissue-specific metabolism. Nature Biotechnology, 2008, 26, 1003-1010.                                                                                           | 9.4 | 594       |
| 362 | The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli.<br>Nature Biotechnology, 2008, 26, 659-667.                                                    | 9.4 | 491       |
| 363 | A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 2008, 26, 1155-1160.                                               | 9.4 | 530       |
| 364 | Three factors underlying incorrect in silico predictions of essential metabolic genes. BMC Systems Biology, 2008, 2, 14.                                                                           | 3.0 | 22        |
| 365 | Formulating genomeâ€scale kinetic models in the postâ€genome era. Molecular Systems Biology, 2008, 4,<br>171.                                                                                      | 3.2 | 150       |
| 366 | Genome-wide analysis of Fis binding in <i>Escherichia coli</i> indicates a causative role for<br>A-/AT-tracts. Genome Research, 2008, 18, 900-910.                                                 | 2.4 | 164       |
| 367 | Genome-scale reconstruction of the Lrp regulatory network in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19462-19467.    | 3.3 | 169       |
| 368 | Context-Specific Metabolic Networks Are Consistent with Experiments. PLoS Computational Biology, 2008, 4, e1000082.                                                                                | 1.5 | 509       |
| 369 | Top-Down Analysis of Temporal Hierarchy in Biochemical Reaction Networks. PLoS Computational Biology, 2008, 4, e1000177.                                                                           | 1.5 | 52        |
| 370 | Impact of Individual Mutations on Increased Fitness in Adaptively Evolved Strains of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5087-5094.                                      | 1.0 | 47        |
| 371 | Aerobic Fermentation of d -Glucose by an Evolved Cytochrome Oxidase-Deficient Escherichia coli<br>Strain. Applied and Environmental Microbiology, 2008, 74, 7561-7569.                             | 1.4 | 50        |
| 372 | The reconstruction of the genomeâ€scale transcriptional regulatory network in e. coli. FASEB Journal, 2008, 22, 529.3.                                                                             | 0.2 | 0         |
| 373 | Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput<br>Phenotyping and Gene Essentiality Data. Journal of Biological Chemistry, 2007, 282, 28791-28799. | 1.6 | 387       |
| 374 | Building the power house: recent advances in mitochondrial studies through proteomics and systems biology. American Journal of Physiology - Cell Physiology, 2007, 292, C164-C177.                 | 2.1 | 32        |
| 375 | Metabolic Characterization of Escherichia coli Strains Adapted to Growth on Lactate. Applied and Environmental Microbiology, 2007, 73, 4639-4647.                                                  | 1.4 | 56        |
| 376 | Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome. Molecular Genetics and Metabolism, 2007, 91, 15-22.                                   | 0.5 | 35        |
| 377 | Toward whole cell modeling and simulation: Comprehensive functional genomics through the constraint-based approach. , 2007, 64, 265-309.                                                           |     | 27        |
| 378 | A genomeâ€scale metabolic reconstruction for Escherichia coli Kâ€12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 2007, 3, 121.                     | 3.2 | 1,234     |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Global reconstruction of the human metabolic network based on genomic and bibliomic data.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1777-1782. | 3.3  | 1,259     |
| 380 | Crystal Structure of a Hyperactive Escherichia coli Glycerol Kinase Mutant Gly230 → Asp Obtained Using Microfluidic Crystallization Devices,. Biochemistry, 2007, 46, 5722-5731.                    | 1.2  | 25        |
| 381 | A genome-scale, constraint-based approach to systems biology of human metabolism. Molecular<br>BioSystems, 2007, 3, 598.                                                                            | 2.9  | 60        |
| 382 | Microbial regulatory and metabolic networks. Current Opinion in Biotechnology, 2007, 18, 360-364.                                                                                                   | 3.3  | 29        |
| 383 | Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox.<br>Nature Protocols, 2007, 2, 727-738.                                                              | 5.5  | 757       |
| 384 | Isotopomer analysis of cellular metabolism in tissue culture: A comparative study between the pathway and network-based methods. Metabolomics, 2007, 2, 243-256.                                    | 1.4  | 5         |
| 385 | In Silico Analysis of SNPs and Other High-Throughput Data. Methods in Molecular Biology, 2007, 366, 267-285.                                                                                        | 0.4  | 4         |
| 386 | Candidate States of Helicobacter pylori's Genome-Scale Metabolic Network upon Application of "Loop<br>Law―Thermodynamic Constraints. Biophysical Journal, 2006, 90, 3919-3928.                      | 0.2  | 45        |
| 387 | Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Applied and Environmental Microbiology, 2006, 72, 1558-1568.                 | 1.4  | 290       |
| 388 | Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Research, 2006, 16, 627-635.                                       | 2.4  | 202       |
| 389 | Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 2006, 38, 1406-1412.                                        | 9.4  | 354       |
| 390 | Towards multidimensional genome annotation. Nature Reviews Genetics, 2006, 7, 130-141.                                                                                                              | 7.7  | 321       |
| 391 | The model organism as a system: integrating 'omics' data sets. Nature Reviews Molecular Cell Biology, 2006, 7, 198-210.                                                                             | 16.1 | 678       |
| 392 | Systems biology as a foundation for genome-scale synthetic biology. Current Opinion in<br>Biotechnology, 2006, 17, 488-492.                                                                         | 3.3  | 109       |
| 393 | Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition. BMC Bioinformatics, 2006, 7, 132.                                | 1.2  | 32        |
| 394 | Isotopomer analysis of myocardial substrate metabolism: A systems biology approach. Biotechnology<br>and Bioengineering, 2006, 95, 972-983.                                                         | 1.7  | 25        |
| 395 | Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.<br>Biotechnology and Bioengineering, 2006, 95, 992-1002.                                                 | 1.7  | 65        |
| 396 | Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems. PLoS<br>Computational Biology, 2006, 2, e101.                                                                 | 1.5  | 84        |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux<br>Profiles. PLoS Computational Biology, 2006, 2, e72.                                                                                        | 1.5  | 105       |
| 398 | Long-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal<br>Organization. PLoS Computational Biology, 2006, 2, e2.                                                                                 | 1.5  | 46        |
| 399 | Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach. PLoS<br>Computational Biology, 2006, 2, e52.                                                                                                   | 1.5  | 46        |
| 400 | Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. Journal of Biomedical Optics, 2006, 11, 014034.                                                                  | 1.4  | 61        |
| 401 | PCR-based tandem epitope tagging system forEscherichia coligenome engineering. BioTechniques, 2006, 40, 67-72.                                                                                                                           | 0.8  | 52        |
| 402 | Systems approach to refining genome annotation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17480-17484.                                                                                 | 3.3  | 262       |
| 403 | Systems biology of SNPs. Molecular Systems Biology, 2006, 2, 38.                                                                                                                                                                         | 3.2  | 53        |
| 404 | Latent Pathway Activation and Increased Pathway Capacity Enable Escherichia coli Adaptation to Loss<br>of Key Metabolic Enzymes. Journal of Biological Chemistry, 2006, 281, 8024-8033.                                                  | 1.6  | 165       |
| 405 | Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli.<br>Journal of Bacteriology, 2006, 188, 8259-8271.                                                                                        | 1.0  | 237       |
| 406 | Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews<br>Molecular Cell Biology, 2005, 6, 99-111.                                                                                              | 16.1 | 472       |
| 407 | In silico design and adaptive evolution ofEscherichia colifor production of lactic acid.<br>Biotechnology and Bioengineering, 2005, 91, 643-648.                                                                                         | 1.7  | 346       |
| 408 | Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnology and Bioengineering, 2005, 91, 872-876.                                  | 1.7  | 47        |
| 409 | The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few<br>dominant functional states. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 19103-19108. | 3.3  | 90        |
| 410 | Immobilization of Escherichia coli RNA Polymerase and Location of Binding Sites by Use of Chromatin<br>Immunoprecipitation and Microarrays. Journal of Bacteriology, 2005, 187, 6166-6174.                                               | 1.0  | 105       |
| 411 | Candidate Metabolic Network States in Human Mitochondria. Journal of Biological Chemistry, 2005, 280, 11683-11695.                                                                                                                       | 1.6  | 138       |
| 412 | Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Research, 2005, 15, 1365-1372.                                                               | 2.4  | 246       |
| 413 | k-Cone Analysis: Determining All Candidate Values for Kinetic Parameters on a Network Scale.<br>Biophysical Journal, 2005, 88, 1616-1625.                                                                                                | 0.2  | 79        |
| 414 | Properties of Metabolic Networks: Structure versus Function. Biophysical Journal, 2005, 88, L07-L09.                                                                                                                                     | 0.2  | 83        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12. Genome<br>Research, 2004, 14, 2495-2502.                                                                    | 2.4  | 36        |
| 416 | Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network<br>Based on Proteomic and Biochemical Data. Journal of Biological Chemistry, 2004, 279, 39532-39540.      | 1.6  | 139       |
| 417 | Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized<br>Genome-Scale Metabolic Model. Genome Research, 2004, 14, 1298-1309.                                    | 2.4  | 557       |
| 418 | In SilicoMetabolic Model and Protein Expression ofHaemophilus influenzaeStrain Rd KW20 in Rich<br>Medium. OMICS A Journal of Integrative Biology, 2004, 8, 25-41.                                     | 1.0  | 42        |
| 419 | Genome-Scale In Silico Models of E. coli Have Multiple Equivalent Phenotypic States: Assessment of<br>Correlated Reaction Subsets That Comprise Network States. Genome Research, 2004, 14, 1797-1805. | 2.4  | 181       |
| 420 | Two-dimensional annotation of genomes. Nature Biotechnology, 2004, 22, 1218-1219.                                                                                                                     | 9.4  | 66        |
| 421 | The evolution of molecular biology into systems biology. Nature Biotechnology, 2004, 22, 1249-1252.                                                                                                   | 9.4  | 460       |
| 422 | Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nature Genetics, 2004, 36, 1056-1058.                                                      | 9.4  | 282       |
| 423 | Integrating high-throughput and computational data elucidates bacterial networks. Nature, 2004, 429, 92-96.                                                                                           | 13.7 | 796       |
| 424 | Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.<br>Trends in Biochemical Sciences, 2004, 29, 641-647.                                                  | 3.7  | 189       |
| 425 | Comparison of network-based pathway analysis methods. Trends in Biotechnology, 2004, 22, 400-405.                                                                                                     | 4.9  | 347       |
| 426 | Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space.<br>Journal of Theoretical Biology, 2004, 228, 437-447.                                               | 0.8  | 117       |
| 427 | Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: theEscherichia coli spectrum. Biotechnology and Bioengineering, 2004, 86, 317-331.    | 1.7  | 85        |
| 428 | Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. Journal of Theoretical Biology, 2004, 227, 283-297.                           | 0.8  | 97        |
| 429 | Reconstruction of microbial transcriptional regulatory networks. Current Opinion in<br>Biotechnology, 2004, 15, 70-77.                                                                                | 3.3  | 149       |
| 430 | The JAK-STAT Signaling Network in the Human B-Cell: An Extreme Signaling Pathway Analysis.<br>Biophysical Journal, 2004, 87, 37-46.                                                                   | 0.2  | 117       |
| 431 | Uniform Sampling of Steady-State Flux Spaces: Means to Design Experiments and to Interpret<br>Enzymopathies. Biophysical Journal, 2004, 87, 2172-2186.                                                | 0.2  | 130       |
| 432 | Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Reviews<br>Microbiology, 2004, 2, 886-897.                                                                 | 13.6 | 935       |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | Scalable method to determine mutations that occur during adaptive evolution of Escherichia coli.<br>Biotechnology Letters, 2003, 25, 435-441.                                             | 1.1  | 8         |
| 434 | Initial Proteome Analysis of Model Microorganism Haemophilus influenzae Strain Rd KW20. Journal of<br>Bacteriology, 2003, 185, 4593-4602.                                                 | 1.0  | 66        |
| 435 | Description and Interpretation of Adaptive Evolution of Escherichia coli K-12 MG1655 by Using a<br>Genome-Scale In Silico Metabolic Model. Journal of Bacteriology, 2003, 185, 6400-6408. | 1.0  | 114       |
| 436 | Large-Scale Evaluation ofIn SilicoGene Deletions inSaccharomyces cerevisiae. OMICS A Journal of Integrative Biology, 2003, 7, 193-202.                                                    | 1.0  | 135       |
| 437 | Metabolic pathways in the post-genome era. Trends in Biochemical Sciences, 2003, 28, 250-258.                                                                                             | 3.7  | 347       |
| 438 | Genome-scale microbial in silico models: the constraints-based approach. Trends in Biotechnology, 2003, 21, 162-169.                                                                      | 4.9  | 365       |
| 439 | Development of network-based pathway definitions: the need to analyze real metabolic networks.<br>Trends in Biotechnology, 2003, 21, 195-198.                                             | 4.9  | 51        |
| 440 | Constraints-based models: Regulation of Gene Expression Reduces the Steady-state Solution Space.<br>Journal of Theoretical Biology, 2003, 221, 309-325.                                   | 0.8  | 157       |
| 441 | Sequence-Based Analysis of Metabolic Demands for Protein Synthesis in Prokaryotes. Journal of<br>Theoretical Biology, 2003, 220, 1-18.                                                    | 0.8  | 48        |
| 442 | Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology?. Biotechnology and Bioengineering, 2003, 84, 763-772.               | 1.7  | 76        |
| 443 | Systemic metabolic reactions are obtained by singular value decomposition of genome-scale stoichiometric matrices. Journal of Theoretical Biology, 2003, 224, 87-96.                      | 0.8  | 37        |
| 444 | Reconstructing metabolic flux vectors from extreme pathways: defining the α-spectrum. Journal of<br>Theoretical Biology, 2003, 224, 313-324.                                              | 0.8  | 148       |
| 445 | Network-based analysis of metabolic regulation in the human red blood cell. Journal of Theoretical<br>Biology, 2003, 225, 185-194.                                                        | 0.8  | 64        |
| 446 | Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Research, 2003, 13, 244-253.                                                                        | 2.4  | 931       |
| 447 | Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli. Journal of Bacteriology, 2003, 185, 2692-2699.                                                          | 1.0  | 280       |
| 448 | The Convex Basis of the Left Null Space of the Stoichiometric Matrix Leads to the Definition of Metabolically Meaningful Pools. Biophysical Journal, 2003, 85, 16-26.                     | 0.2  | 79        |
| 449 | Analysis of Metabolic Capabilities Using Singular Value Decomposition of Extreme Pathway Matrices.<br>Biophysical Journal, 2003, 84, 794-804.                                             | 0.2  | 73        |
| 450 | An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology, 2003, 4,<br>R54.                                                                                | 13.9 | 880       |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13134-13139. | 3.3  | 345       |
| 452 | H. influenzae Consortium: Integrative Study of H. influenzae-Human Interactions. OMICS A Journal of Integrative Biology, 2002, 6, 341-348.                                                                                                          | 1.0  | 4         |
| 453 | Transcriptional Regulation in Constraints-based Metabolic Models of Escherichia coli. Journal of<br>Biological Chemistry, 2002, 277, 28058-28064.                                                                                                   | 1.6  | 301       |
| 454 | Extreme Pathway Lengths and Reaction Participation in Genome-Scale Metabolic Networks. Genome<br>Research, 2002, 12, 1889-1900.                                                                                                                     | 2.4  | 125       |
| 455 | Genome-Scale Metabolic Model of Helicobacter pylori 26695. Journal of Bacteriology, 2002, 184, 4582-4593.                                                                                                                                           | 1.0  | 317       |
| 456 | Description and Analysis of Metabolic Connectivity and Dynamics in the Human Red Blood Cell.<br>Biophysical Journal, 2002, 83, 646-662.                                                                                                             | 0.2  | 63        |
| 457 | Extreme Pathway Analysis of Human Red Blood Cell Metabolism. Biophysical Journal, 2002, 83, 808-818.                                                                                                                                                | 0.2  | 156       |
| 458 | CHARACTERIZATION AND EFFICACY OF PKH26 AS A PROBE TO STUDY THE REPLICATION HISTORY OF THE HUMAN HEMATOPOIETIC KG1a PROGENITOR CELL LINE. In Vitro Cellular and Developmental Biology - Animal, 2002, 38, 90.                                        | 0.7  | 12        |
| 459 | Murine Sca-1 + /Lin â^ cells and human KG1a cells exhibit multiple pseudopod morphologies during migration. Experimental Hematology, 2002, 30, 460-463.                                                                                             | 0.2  | 16        |
| 460 | Characterizing the metabolic phenotype: A phenotype phase plane analysis. Biotechnology and<br>Bioengineering, 2002, 77, 27-36.                                                                                                                     | 1.7  | 166       |
| 461 | The Genome-Scale Metabolic Extreme Pathway Structure in Haemophilus influenzae Shows Significant<br>Network Redundancy. Journal of Theoretical Biology, 2002, 215, 67-82.                                                                           | 0.8  | 115       |
| 462 | Optimization and mathematical modeling of the transtubular bioreactor for the production of monoclonal antibodies from a hybridoma cell line. Biotechnology and Bioprocess Engineering, 2002, 7, 163-170.                                           | 1.4  | 1         |
| 463 | Characterization of the KG1a cell line for use in a cell migration based screening assay. Biotechnology and Bioprocess Engineering, 2002, 7, 178-184.                                                                                               | 1.4  | 4         |
| 464 | Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology, 2002, 4, 133-140.                                                                                                                                           | 1.8  | 335       |
| 465 | Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth.<br>Nature, 2002, 420, 186-189.                                                                                                                    | 13.7 | 797       |
| 466 | In silico biology through "omics― Nature Biotechnology, 2002, 20, 649-650.                                                                                                                                                                          | 9.4  | 93        |
| 467 | Comment on "Time Dependent Concentration Profile of Secreted Molecules in the Intercellular<br>Signalingâ€: Journal of the Physical Society of Japan, 2002, 71, 1005-1006.                                                                          | 0.7  | 4         |
| 468 | Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R695-R704.                            | 0.9  | 136       |

BERNHARD O PALSSON

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Regulation of Gene Expression in Flux Balance Models of Metabolism. Journal of Theoretical Biology, 2001, 213, 73-88.                                                                                                        | 0.8 | 399       |
| 470 | In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data.<br>Nature Biotechnology, 2001, 19, 125-130.                                                                          | 9.4 | 877       |
| 471 | Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences, 2001, 26, 179-186.                                                                                                                        | 3.7 | 291       |
| 472 | WHAT LIES BEYOND BIOINFORMATICS?. Advanced Series in Biomechanics, 2001, , 121-144.                                                                                                                                          | 0.1 | 0         |
| 473 | Extension of osmolality-induced podia is observed from fluorescently labeled hematopoietic cell<br>lines in hyperosmotic medium. , 2000, 40, 109-118.                                                                        |     | 4         |
| 474 | Intercellular adhesion can be visualized using fluorescently labeled fibrosarcoma HT1080 cells<br>cocultured with hematopoietic cell lines or CD34+ enriched human mobilized peripheral blood cells. ,<br>2000, 40, 119-125. |     | 6         |
| 475 | Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic<br>Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology, 2000, 203, 229-248.                        | 0.8 | 649       |
| 476 | Assessment of the Metabolic Capabilities of Haemophilus influenzae Rd through a Genome-scale<br>Pathway Analysis. Journal of Theoretical Biology, 2000, 203, 249-283.                                                        | 0.8 | 216       |
| 477 | The challenges of in silico biology. Nature Biotechnology, 2000, 18, 1147-1150.                                                                                                                                              | 9.4 | 260       |
| 478 | Robustness Analysis of the Escherichia coli Metabolic Network. Biotechnology Progress, 2000, 16, 927-939.                                                                                                                    | 1.3 | 179       |
| 479 | IN SITU LABELING OF ADHERENT CELLS WITH PKH26. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 4.                                                                                                            | 0.7 | 7         |
| 480 | Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC<br>Bioinformatics, 2000, 1, 1.                                                                                       | 1.2 | 221       |
| 481 | The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5528-5533.           | 3.3 | 833       |
| 482 | Toward Metabolic Phenomics: Analysis of Genomic Data Using Flux Balances. Biotechnology Progress,<br>1999, 15, 288-295.                                                                                                      | 1.3 | 166       |
| 483 | Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post-genomic Era.<br>Biotechnology Progress, 1999, 15, 296-303.                                                                                | 1.3 | 303       |
| 484 | Decoding developments in Iceland. Nature Biotechnology, 1999, 17, 407-407.                                                                                                                                                   | 9.4 | 8         |
| 485 | Phototoxicity of the fluorescent membrane dyes PKH2 and PKH26 on the human hematopoietic KG1a progenitor cell line. , 1999, 36, 312-318.                                                                                     |     | 36        |
| 486 | Key adhesion molecules are present on long podia extended by hematopoietic cells. , 1999, 37, 171-177.                                                                                                                       |     | 22        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Systems Properties of the Haemophilus influenzaeRd Metabolic Genotype. Journal of Biological<br>Chemistry, 1999, 274, 17410-17416.                                                                                                                | 1.6 | 333       |
| 488 | How will bioinformatics influence metabolic engineering?. , 1998, 58, 162-169.                                                                                                                                                                    |     | 83        |
| 489 | Cell cycle dependence of retroviral transduction: An issue of overlapping time scales. , 1998, 58, 272-281.                                                                                                                                       |     | 27        |
| 490 | Elemental balancing of biomass and medium composition enhances growth capacity in high-densityChlorella vulgaris cultures. , 1998, 59, 605-611.                                                                                                   |     | 177       |
| 491 | Two New Pseudopod Morphologies Displayed by the Human Hematopoietic KG1a Progenitor Cell Line<br>and by Primary Human CD34+Cells. Blood, 1998, 92, 3616-3623.                                                                                     | 0.6 | 48        |
| 492 | The underlying pathway structure of biochemical reaction networks. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4193-4198.                                                                          | 3.3 | 158       |
| 493 | Hematopoietic Cells. , 1998, , 460-470.                                                                                                                                                                                                           |     | 1         |
| 494 | Two New Pseudopod Morphologies Displayed by the Human Hematopoietic KG1a Progenitor Cell Line<br>and by Primary Human CD34+Cells. Blood, 1998, 92, 3616-3623.                                                                                     | 0.6 | 1         |
| 495 | Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12258-12262. | 3.3 | 191       |
| 496 | Coupled Effects of Polybrene and Calf Serum on the Efficiency of Retroviral Transduction and the Stability of Retroviral Vectors. Human Gene Therapy, 1997, 8, 285-291.                                                                           | 1.4 | 42        |
| 497 | Bioinformatics: What lies beyond bioinformatics?. Nature Biotechnology, 1997, 15, 3-4.                                                                                                                                                            | 9.4 | 36        |
| 498 | Cell cycle of Chlorella vulgaris can deviate from the synchronous binary division model.<br>Biotechnology Letters, 1997, 19, 587-591.                                                                                                             | 1.1 | 7         |
| 499 | Retroviral Infection Is Limited by Brownian Motion. Human Gene Therapy, 1996, 7, 1527-1534.                                                                                                                                                       | 1.4 | 121       |
| 500 | Determination of specific oxygen uptake rates in human hematopoietic cultures and implications for bioreactor design. Annals of Biomedical Engineering, 1996, 24, 373-381.                                                                        | 1.3 | 46        |
| 501 | Kinetics of Retrovirus Mediated Gene Transfer: The Importance of Intracellular Half-Life of<br>Retroviruses. Journal of Theoretical Biology, 1996, 182, 1-20.                                                                                     | 0.8 | 31        |
| 502 | Kinetics of retroviral production from the amphotropic ?CRIP murine producer cell line.<br>Cytotechnology, 1996, 22, 185-195.                                                                                                                     | 0.7 | 25        |
| 503 | Photoacclimation of Chlorella vulgaris to Red Light from Light-Emitting Diodes Leads to Autospore<br>Release Following Each Cellular Division. Biotechnology Progress, 1996, 12, 249-256.                                                         | 1.3 | 45        |
| 504 | Consistent and High Rates of Gene Transfer Can Be Obtained Using Flow-Through Transduction over a<br>Wide Range of Retroviral Titers. Human Gene Therapy, 1996, 7, 743-750.                                                                       | 1.4 | 125       |

BERNHARD O PALSSON

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | Parametric sensitivity of stoichiometric flux balance models applied to wild-typeEscherichia coli<br>metabolism. Biotechnology and Bioengineering, 1995, 45, 69-79.                                           | 1.7 | 64        |
| 506 | Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors. Biotechnology Letters, 1995, 17, 1149-1154.                                             | 1.1 | 7         |
| 507 | Light emitting diode-based algal photobioreactor with external gas exchange. Journal of Bioscience and Bioengineering, 1995, 79, 257-263.                                                                     | 0.9 | 44        |
| 508 | Chlorella vulgaris(Chlorellaceae)does not secrete autoinhibitors at high cell densities. American<br>Journal of Botany, 1995, 82, 955-963.                                                                    | 0.8 | 14        |
| 509 | Importance of Nonhomogeneous Concentration Distributions Near Walls in Tissue Engineering<br>Bioreactors. Industrial & Engineering Chemistry Research, 1995, 34, 3239-3245.                                   | 1.8 | 6         |
| 510 | In Vitro Expansion of Hematopoietic Cells for Clinical Application. Cancer Treatment and Research, 1995, 76, 215-223.                                                                                         | 0.2 | 9         |
| 511 | Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities. , 1995, 82,<br>955.                                                                                                |     | 10        |
| 512 | Monoclonal Antibody Production using Free-suspended and Entrapped Hybridoma Cells.<br>Biotechnology and Genetic Engineering Reviews, 1994, 12, 509-534.                                                       | 2.4 | 3         |
| 513 | Enhanced specific antibody productivity of calcium alginate-entrapped hybridoma is cell line-specific.<br>Cytotechnology, 1994, 16, 1-15.                                                                     | 0.7 | 9         |
| 514 | Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotechnology and Bioengineering, 1994, 43, 275-285.                                                  | 1.7 | 24        |
| 515 | Microencapsulated human bone marrow cultures: A potential culture system for the clonal<br>outgrowth of hematopoietic progenitor cells. Biotechnology and Bioengineering, 1994, 43, 734-739.                  | 1.7 | 31        |
| 516 | Frequent harvesting from perfused bone marrow cultures results in increased overall cell and progenitor expansion. Biotechnology and Bioengineering, 1994, 44, 609-616.                                       | 1.7 | 23        |
| 517 | High-density algal photobioreactors using light-emitting diodes. Biotechnology and Bioengineering, 1994, 44, 1161-1167.                                                                                       | 1.7 | 164       |
| 518 | Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/technology, 1994, 12,<br>994-998.                                                                                                 | 1.9 | 786       |
| 519 | Model Complexity has a Significant Effect on the Numerical Value and Interpretation of Metabolic Sensitivity Coefficients. Journal of Theoretical Biology, 1993, 161, 299-315.                                | 0.8 | 48        |
| 520 | Metabolic Capabilities of Escherichia coli: I. Synthesis of Biosynthetic Precursors and Cofactors.<br>Journal of Theoretical Biology, 1993, 165, 477-502.                                                     | 0.8 | 249       |
| 521 | Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns. Journal of Theoretical Biology, 1993, 165, 503-522.                                                                                   | 0.8 | 238       |
| 522 | Cell Culture conditions determine the enhancement of specific monoclonal antibody productivity of calcium alginate-entrapped S3H5/?2bA2 hybridoma cells. Biotechnology and Bioengineering, 1993, 41, 330-340. | 1.7 | 26        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Simultaneous enzymatic/electrochemical determination of glucose andL-glutamine in hybridoma media<br>by flow-injection analysis Biotechnology and Bioengineering, 1993, 41, 964-969.                        | 1.7 | 23        |
| 524 | Biochemical production capabilities ofescherichia coli. Biotechnology and Bioengineering, 1993, 42, 59-73.                                                                                                  | 1.7 | 184       |
| 525 | Loss of antibody productivity is highly reproducible in multiple hybridoma subclones. Biotechnology and Bioengineering, 1993, 42, 247-250.                                                                  | 1.7 | 20        |
| 526 | Review: Tissue engineering: Reconstitution of human hematopoiesis ex vivo. Biotechnology and<br>Bioengineering, 1993, 42, 909-930.                                                                          | 1.7 | 66        |
| 527 | Stability of antibody productivity is improved when hybridoma cells are entrapped in calcium alginate beads. Biotechnology and Bioengineering, 1993, 42, 1131-1135.                                         | 1.7 | 19        |
| 528 | Effect of fixation temperature on flow cytometric measurement of intracellular antibody content of hybridomas during batch culture. Biotechnology Letters, 1993, 7, 271-276.                                | 0.5 | 4         |
| 529 | Expansion of Human Bone Marrow Progenitor Cells in a High Cell Density Continuous Perfusion<br>System. Bio/technology, 1993, 11, 368-372.                                                                   | 1.9 | 106       |
| 530 | Simultaneous determination of ammonia nitrogen and L-glutamine in bioreactor media using flow injection. Analyst, The, 1993, 118, 1361.                                                                     | 1.7 | 10        |
| 531 | Network analysis of intermediary metabolism using linear optimization. Journal of Theoretical<br>Biology, 1992, 154, 455-473.                                                                               | 0.8 | 97        |
| 532 | Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. Journal of Theoretical Biology, 1992, 155, 201-214.                                                  | 0.8 | 81        |
| 533 | Effect of calcium chloride treatment on hybridoma cell viability and growth. Biotechnology Letters, 1992, 14, 891-896.                                                                                      | 1.1 | 14        |
| 534 | Observations consistent with autocrine stimulation of hybridoma cell growth and implications for large-scale antibody production. Biotechnology Letters, 1992, 14, 257-262.                                 | 1.1 | 17        |
| 535 | Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. Journal of Theoretical Biology, 1992, 154, 421-454.                                        | 0.8 | 246       |
| 536 | Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. Journal of Theoretical Biology, 1992, 155, 215-242.                       | 0.8 | 53        |
| 537 | A Macintosh software package for simulation of human red blood cell metabolism. Computer<br>Methods and Programs in Biomedicine, 1992, 38, 195-226.                                                         | 2.6 | 12        |
| 538 | Population balance between producing and nonproducing hybridoma clones is very sensitive to serum<br>level, state of inoculum, and medium composition. Biotechnology and Bioengineering, 1992, 39, 354-360. | 1.7 | 45        |
| 539 | Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production.<br>Biotechnology and Bioengineering, 1992, 39, 418-431.                                                            | 1.7 | 328       |
| 540 | Continuous photoautotrophic cultures of the eukaryotic algachlorella vulgaris can exhibit stable oscillatory dynamics. Biotechnology and Bioengineering, 1992, 39, 487-497.                                 | 1.7 | 19        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 541 | Examination of serum and bovine serum albumin as shear protective agents in agitated cultures of hybridoma cells. Journal of Biotechnology, 1991, 18, 13-28.                                                                  | 1.9 | 20        |
| 542 | Influence of medium exchange schedules on metabolic, growth, and GM-CSF secretion rates of genetically engineered NIH-3T3 cells. Biotechnology Progress, 1991, 7, 1-8.                                                        | 1.3 | 20        |
| 543 | Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnology Progress, 1991, 7, 481-494. | 1.3 | 159       |
| 544 | Application of population balance model to explain loss of hybridoma antibody productivity.<br>Biotechnology Progress, 1991, 7, 72-75.                                                                                        | 1.3 | 41        |
| 545 | Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 1. Analysis of data from controlled batch reactors. Biotechnology Progress, 1991, 7, 471-480.                                                  | 1.3 | 64        |
| 546 | The construction of high efficiency human bone marrow tissue ex vivo. Journal of Cellular<br>Biochemistry, 1991, 45, 268-272.                                                                                                 | 1.2 | 9         |
| 547 | Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells. Journal of Cellular Physiology, 1991, 147, 344-353.    | 2.0 | 62        |
| 548 | Physiological changes during the adaptation of hybridoma cells to low serum and serum-free media.<br>Biotechnology and Bioengineering, 1991, 37, 35-46.                                                                       | 1.7 | 42        |
| 549 | Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production.<br>Biotechnology and Bioengineering, 1991, 37, 989-993.                                                                                 | 1.7 | 178       |
| 550 | Production of monoclonal antibody using free-suspended and immobilized hybridoma cells: Effect of serum. Biotechnology and Bioengineering, 1991, 38, 821-830.                                                                 | 1.7 | 82        |
| 551 | High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnology and Bioengineering, 1991, 38, 1182-1189.                                                   | 1.7 | 132       |
| 552 | Rapid medium perfusion rate significantly increases the productivity and longevity of human bone<br>marrow cultures Proceedings of the National Academy of Sciences of the United States of America,<br>1991, 88, 6760-6764.  | 3.3 | 93        |
| 553 | Chemical decomposition of glutamine in cell culture media: effect of media type, pH, and serum concentration. Biotechnology Progress, 1990, 6, 121-128.                                                                       | 1.3 | 140       |
| 554 | Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics<br>in continuous culture. Biotechnology Progress, 1990, 6, 437-446.                                                        | 1.3 | 95        |
| 555 | Metabolic dynamics in the human red cell. Part Ill—Metabolic reaction rates. Journal of Theoretical<br>Biology, 1990, 142, 41-68.                                                                                             | 0.8 | 78        |
| 556 | Metabolic dynamics in the human red cell. Part IV—Data prediction and some model computations.<br>Journal of Theoretical Biology, 1990, 142, 69-85.                                                                           | 0.8 | 63        |
| 557 | Immobilization can improve the stability of hybridoma antibody productivity in serum-free media.<br>Biotechnology and Bioengineering, 1990, 36, 1049-1055.                                                                    | 1.7 | 79        |
| 558 | Effect of initial cell density on hybridoma growth, metabolism, and monoclonal antibody production.<br>Journal of Biotechnology, 1990, 16, 259-278.                                                                           | 1.9 | 45        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 559 | Mechanism of release from pellets coated with an ethylcellulose-based film. Journal of Controlled Release, 1990, 14, 203-213.                                                                                   | 4.8 | 135       |
| 560 | Serum Can Act as a Shear Protecting Agent in Agitated Hybridoma Cell Cultures. Hybridoma, 1989, 8,<br>639-645.                                                                                                  | 0.9 | 12        |
| 561 | Measurement of ammonia and glutamine in cell culture media by gas sensing electrodes.<br>Biotechnology Letters, 1989, 3, 217-222.                                                                               | 0.5 | 24        |
| 562 | Transtubular bioreactor: A perfusion device for mammalian cell cultivation. Biotechnology Letters,<br>1989, 3, 55-60.                                                                                           | 0.5 | 6         |
| 563 | Control of interspecies electron transfer flow during anaerobic digestion: Dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs. Biotechnology and Bioengineering, 1989, 33, 745-757. | 1.7 | 31        |
| 564 | Metabolic dynamics in the human red cell. Journal of Theoretical Biology, 1989, 141, 515-528.                                                                                                                   | 0.8 | 157       |
| 565 | Metabolic dynamics in the human red cell. Journal of Theoretical Biology, 1989, 141, 529-545.                                                                                                                   | 0.8 | 46        |
| 566 | Effect of Serum Concentration on Hybridoma Cell Growth and Monoclonal Antibody Production at<br>Various Initial Cell Densities. Hybridoma, 1989, 8, 369-375.                                                    | 0.9 | 30        |
| 567 | Kinetics of release from enteric-coated tablets. Pharmaceutical Research, 1988, 05, 550-565.                                                                                                                    | 1.7 | 66        |
| 568 | Dissolution of ionizable drugs in buffered and unbuffered solutions. Pharmaceutical Research, 1988, 05, 272-282.                                                                                                | 1.7 | 71        |
| 569 | Escherichia coil growth dynamics: A three-pool biochemically based description. Biotechnology and<br>Bioengineering, 1988, 31, 102-116.                                                                         | 1.7 | 28        |
| 570 | Effect of mechanical agitation on hybridoma cell growth. Biotechnology Letters, 1988, 10, 625-628.                                                                                                              | 1.1 | 40        |
| 571 | Effect of anchorage dependency on growth rate and monoclonal antibody production of hybridoma cells. Biotechnology Letters, 1988, 10, 307-312.                                                                  | 1.1 | 6         |
| 572 | Mathematical modelling of dynamics and control in metabolic networks: VI. Dynamic bifurcations in single biochemical control loops. Journal of Theoretical Biology, 1988, 131, 43-53.                           | 0.8 | 8         |
| 573 | On the dynamics of the irreversible Michaelis-Menten reaction mechanism. Chemical Engineering<br>Science, 1987, 42, 447-458.                                                                                    | 1.9 | 50        |
| 574 | On the dynamic order of structuredEscherichia coli growth models. Biotechnology and Bioengineering, 1987, 29, 789-792.                                                                                          | 1.7 | 18        |
| 575 | Internal Model Control: extension to nonlinear system. Industrial & Engineering Chemistry Process<br>Design and Development, 1986, 25, 403-411.                                                                 | 0.6 | 405       |
| 576 | Mathematical modelling of dynamics and control in metabolic networks. III. Linear reaction sequences. Journal of Theoretical Biology, 1985, 113, 231-259.                                                       | 0.8 | 27        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 577 | Mathematical modelling of dynamics and control in metabolic networks. IV. Local stability analysis of single biochemical control loops. Journal of Theoretical Biology, 1985, 113, 261-277. | 0.8 | 15        |
| 578 | Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops. Journal of Theoretical Biology, 1985, 113, 279-298.       | 0.8 | 21        |
| 579 | Mathematical modelling of dynamics and control in metabolic networks. I. On michaelis-menten kinetics. Journal of Theoretical Biology, 1984, 111, 273-302.                                  | 0.8 | 87        |
| 580 | Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.<br>Journal of Theoretical Biology, 1984, 111, 303-321.                                    | 0.8 | 19        |
| 581 | Biomass as a Source of Chemical Feedstocks: An Economic Evaluation. Science, 1981, 213, 513-517.                                                                                            | 6.0 | 116       |
| 582 | Signaling Networks. , 0, , 74-86.                                                                                                                                                           |     | 0         |
| 583 | Fundamental Subspaces of S. , 0, , 118-135.                                                                                                                                                 |     | 0         |
| 584 | The (Right) Null Space of S. , 0, , 136-153.                                                                                                                                                |     | 0         |
| 585 | Dual Causality. , 0, , 179-200.                                                                                                                                                             |     | 1         |
| 586 | Finding Functional States. , 0, , 244-264.                                                                                                                                                  |     | 2         |
| 587 | Systemic Post-Translational Control of Bacterial Metabolism Regulates Adaptation in Dynamic Environments. SSRN Electronic Journal, 0, , .                                                   | 0.4 | Ο         |