Agnes Agunos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309610/publications.pdf

Version: 2024-02-01

43 832 16 27 papers citations h-index 973

44 44 973
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Systematic Review Characterizing On-Farm Sources of Campylobacter spp. for Broiler Chickens. PLoS ONE, 2014, 9, e104905.	2.5	96
2	Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Frontiers in Veterinary Science, 2020, 7, 540.	2.2	76
3	Integrated surveillance and potential sources of <i>Salmonella</i> Enteritidis in human cases in Canada from 2003 to 2009. Epidemiology and Infection, 2012, 140, 1757-1772.	2.1	60
4	Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015. PLoS ONE, 2017, 12, e0179384.	2.5	59
5	Ciprofloxacin-Resistant <i>Campylobacter</i> spp. in Retail Chicken, Western Canada. Emerging Infectious Diseases, 2013, 19, 1121-1124.	4.3	47
6	Effect of dietary $\hat{l}^21\hat{a}\in 4$ mannobiose in the prevention of Salmonella enteritidisin fection in broilers. British Poultry Science, 2007, 48, 331-341.	1.7	42
7	Antimicrobial Use and Antimicrobial Resistance Indicators—Integration of Farm-Level Surveillance Data From Broiler Chickens and Turkeys in British Columbia, Canada. Frontiers in Veterinary Science, 2019, 6, 131.	2.2	42
8	Avian hepatitis E virus in an outbreak of hepatitis–splenomegaly syndrome and fatty liver haemorrhage syndrome in two flaxseed-fed layer flocks in Ontario. Avian Pathology, 2006, 35, 404-412.	2.0	38
9	Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Canadian Veterinary Journal, 2012, 53, 1289-300.	0.0	35
10	Risk factors associated with the A2C resistance pattern among E. coli isolates from broiler flocks in Canada. Preventive Veterinary Medicine, 2017, 148, 115-120.	1.9	32
11	Developing Canadian Defined Daily Doses for Animals: A Metric to Quantify Antimicrobial Use. Frontiers in Veterinary Science, 2019, 6, 220.	2.2	28
12	Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases. Avian Diseases, 2016, 60, 553.	1.0	23
13	Ceftiofur-resistant <i>Salmonella enterica</i> serovar Heidelberg of poultry origin – a risk profile using the Codex framework. Epidemiology and Infection, 2019, 147, e296.	2.1	23
14	Antimicrobial therapy of selected diseases in turkeys, laying hens, and minor poultry species in Canada. Canadian Veterinary Journal, 2013, 54, 1041-52.	0.0	20
15	Resistance to extended-spectrum cephalosporins in Escherichia coli and other Enterobacterales from Canadian turkeys. PLoS ONE, 2020, 15, e0236442.	2.5	19
16	Antimicrobials Used in Backyard and Commercial Poultry and Swine Farms in the Philippines: A Qualitative Pilot Study. Frontiers in Veterinary Science, 2020, 7, 329.	2.2	17
17	Changes in antimicrobial resistance levels among and in Ontario broiler chickens between 2003 and 2015. Canadian Journal of Veterinary Research, 2018, 82, 163-177.	0.2	16
18	Reduction in Antimicrobial Use and Resistance to <i>Salmonella</i> , <i>Campylobacter</i> , and <i>Escherichia coli</i> in Broiler Chickens, Canada, 2013–2019. Emerging Infectious Diseases, 2021, 27, 2434-2444.	4.3	15

#	Article	IF	CITATIONS
19	Prevalence and antimicrobial resistance among <i>Escherichia coli</i> and <i>Salmonella</i> in Ontario smallholder chicken flocks. Zoonoses and Public Health, 2018, 65, 134-141.	2.2	13
20	<i>Salmonella</i> spp. prevalence and antimicrobial resistance in broiler chicken and turkey flocks in Canada from 2013 to 2018. Zoonoses and Public Health, 2021, 68, 719-736.	2.2	13
21	A within-flock model of Salmonella Heidelberg transmission in broiler chickens. Preventive Veterinary Medicine, 2020, 174, 104823.	1.9	12
22	Understanding the veterinary antibiotics supply chain to address antimicrobial resistance in Lao PDR: Roles and interactions of involved stakeholders. Acta Tropica, 2021, 220, 105943.	2.0	12
23	Complete Genome Sequences of 17 Canadian Isolates of Salmonella enterica subsp. enterica Serovar Heidelberg from Human, Animal, and Food Sources. Genome Announcements, 2016, 4, .	0.8	10
24	Antimicrobial Use Indicesâ€"The Value of Reporting Antimicrobial Use in Multiple Ways Using Data From Canadian Broiler Chicken and Turkey Farms. Frontiers in Veterinary Science, 2020, 7, 567872.	2.2	10
25	Extended-Spectrum \hat{I}^2 -Lactamase and AmpC \hat{I}^2 -Lactamase-Producing <i>Escherichia coli</i> li> Isolates from Chickens Raised in Small Flocks in Ontario, Canada. Microbial Drug Resistance, 2019, 25, 1250-1256.	2.0	9
26	Antimicrobials Used for the Therapy of Necrotic Enteritis and Coccidiosis in Broiler Chickens and Turkeys in Canada, Farm Surveillance Results (2013–2017). Avian Diseases, 2019, 63, 433.	1.0	9
27	CIPARS: A One-Health Approach to Antimicrobial Resistance Surveillance. Online Journal of Public Health Informatics, 2015, 7, .	0.7	6
28	Informing Stewardship Measures in Canadian Food Animal Species through Integrated Reporting of Antimicrobial Use and Antimicrobial Resistance Surveillance Dataâ€"Part I, Methodology Development. Pathogens, 2021, 10, 1492.	2.8	6
29	Informing Stewardship Measures in Canadian Food Animal Species through Integrated Reporting of Antimicrobial Use and Antimicrobial Resistance Surveillance Data—Part II, Application. Pathogens, 2021, 10, 1491.	2.8	6
30	High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Veterinary Research Communications, 2022, 46, 811-822.	1.6	6
31	Targeting discriminatory SNPs in Salmonella enterica serovar Heidelberg genomes using RNase H2-dependent PCR. Journal of Microbiological Methods, 2019, 157, 81-87.	1.6	5
32	Identification and selection of food safetyâ€related risk factors to be included in the Canadian Food Inspection Agency's Establishmentâ€based Risk Assessment model for Hatcheries. Zoonoses and Public Health, 2020, 67, 14-24.	2.2	5
33	A cross-sectional study of the prevalence factors associated with fluoroquinolone resistant Campylobacter jejuni in broiler flocks in Canada. Preventive Veterinary Medicine, 2021, 186, 105164.	1.9	5
34	Antimicrobial Resistance Surveillance of Pigs and Chickens in the Lao People's Democratic Republic, 2018–2021. Antibiotics, 2022, 11, 177.	3.7	5
35	Effects of Nonimmunized Egg Yolk Powder–Supplemented Feed on Salmonella Enteritidis Prevention and Elimination in Broilers. Avian Diseases, 2006, 50, 366-373.	1.0	4
36	Genetic Characterization of AmpC and Extended-Spectrum Beta-Lactamase Phenotypes in Escherichia coli and Salmonella From Alberta Broiler Chickens. Frontiers in Cellular and Infection Microbiology, 2021, 11, 622195.	3.9	4

3

Agnes Agunos

#	Article	IF	Citations
37	Ciprofloxacin-resistant Campylobacter in broiler chicken in Canada. Canada Communicable Disease Report, 2014, 40, 36-41.	1.3	2
38	Expert Elicitation to Estimate the Relative Risk of Food Safety Criteria Included in the Establishment-Based Risk Assessment Model for Canadian Hatcheries. Foodborne Pathogens and Disease, 2020, 17, 641-665.	1.8	1
39	Antimicrobial resistance and recovery of , and from chicken egg layer flocks in Canadian sentinel surveillance sites using 2 types of sample matrices. Canadian Journal of Veterinary Research, 2021, 85, 27-35.	0.2	1
40	Campylobacter résistant à la ciprofloxacine dans le poulet à griller au Canada. Relevé Des Maladies Transmissibles Au Canada, 2014, 40, 42-48.	0.0	0
41	Antimicrobial use and resistance and the relationship with health and biosecurity status in CIPARS data from Canadian grower-finisher swine herds. , 0, , .		O
42	Evaluation of selective media in antimicrobial surveillance programs capturing broad-spectrum β-lactamase producing from chickens at slaughter. Canadian Veterinary Journal, 2021, 62, 608-610.	0.0	0
43	Canadian Collaboration to Identify a Minimum Dataset for Antimicrobial Use Surveillance for Policy and Intervention Development across Food Animal Sectors. Antibiotics, 2022, 11, 226.	3.7	0