Hun-Soo Byun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309372/publications.pdf

Version: 2024-02-01

331670 395702 1,689 96 21 h-index citations g-index papers

96 96 96 959 times ranked docs citations citing authors all docs

33

#	Article	IF	Citations
1	A review on graphene oxide effect in energy storage devices. Journal of Industrial and Engineering Chemistry, 2022, 106, 20-36.	5.8	24
2	Experimental and numerical study on smectic aligned zirconium phosphate decorated graphene oxide hybrids effects over waterborne epoxy multi-functional properties enhancement. Journal of Industrial and Engineering Chemistry, 2022, 107, 165-179.	5.8	4
3	Co-solvent concentration impact on the cloud point behavior of 2- and 3-ingredient systems of the poly(tridecyl methacrylate) in supercritical CO ₂ . New Journal of Chemistry, 2022, 46, 2300-2308.	2.8	10
4	Binary mixture phase equilibria for the vinyl laurate, vinyl methacrylate and vinyl propionate under high pressure carbon dioxide. Journal of Chemical Thermodynamics, 2022, 168, 106746.	2.0	16
5	Bubble and dew-point measurement of mixtures of $1 < i > H < i>, 1 < i> H < i>, 2 < i> H < i>, -perfluoro-1-octene and 1 < i > H < i>, 1 < i> H < i>, 1 < i> H < i>, 2 < i > H < i>, 2 < i> H < i>, 2 < i> H < i>, 2 < i > H < i>, 2 < i> H < i>, 2 < i> H < i>, 2 < i> H < i>, 2 < i > H < i>, 2 < i> H < i>, 2 < i > H < i>, 2 < i> H < i>, 2 < i > H < i>, 2 < i $	2.8	11
6	Experimental and computational investigation of two-component mixtures for the alkyl (ethyl, propyl) Tj ETQq0 C 2022, 110, 367-374.	0 rgBT /C 5.8	verlock 10 Tf 13
7	Binary equilibrium behavior for the N,N-dimethylaniline and N,N-diethylaniline in supercritical carbon dioxide. Journal of Molecular Liquids, 2022, 357, 119112.	4.9	10
8	MXenes: An emerging 2D material. Carbon, 2022, 192, 366-383.	10.3	46
9	Phase behavioral study of binary systems for the vinyl Benzoate, vinyl pivalate and vinyl octanoate with carbon dioxide at high-pressure. Journal of Molecular Liquids, 2022, 358, 119131.	4.9	14
10	Experimental and computational phase behavior analysis of the PGME+CO2 and PGMEA+CO2 mixture at high pressures. Korean Journal of Chemical Engineering, 2022, 39, 2783-2791.	2.7	7
11	Maximization of the power production in LNG cold energy recovery plant via genetic algorithm. Korean Journal of Chemical Engineering, 2021, 38, 380-385.	2.7	10
12	Two component phase equilibria for the 3-methoxy-3-methyl-1-butanol and 1-methoxy-2-methyl-2-propanol in supercritical carbon dioxide. Korean Journal of Chemical Engineering, 2021, 38, 610-616.	2.7	7
13	Separation and recognition characteristics by MIP manufacture using supercritical CO2 technology. Journal of Industrial and Engineering Chemistry, 2021, 97, 356-367.	5.8	4
14	Phase separation of two- and three-component solution for the poly(pentyl acrylate-co-methyl) Tj ETQq0 0 0 rgB1 polymerization. Journal of Industrial and Engineering Chemistry, 2021, 99, 158-171.	Overlock	10 Tf 50 22 5
15	Co-solvent concentration influence of two- and three-component systems on the high pressure cloud-point behavior for the poly(vinyl stearate) under supercritical CO2. Journal of Industrial and Engineering Chemistry, 2020, 90, 76-84.	5.8	10
16	Measurement and modeling of poly(vinyl stearate) in supercritical fluids. Journal of CO2 Utilization, 2020, 37, 346-352.	6.8	7
17	Phase equilibria and cloud-point behavior for the poly(2-phenylethyl methacrylate) in supercritical CO2 with monomers as co-solvent. Journal of CO2 Utilization, 2019, 31, 215-225.	6.8	8
18	Phase behaviour for the (CO2 + 1-butyl-2-pyrrolidone) and (CO2 + 1-octyl-2-pyrrolidone) systems at temperatures from (313.2 to 393.2) K and pressures up to 28 MPa. Journal of Chemical Thermodynamics, 2019, 130, 140-146.	2.0	7

#	Article	lF	Citations
19	Solubility on tetrahydrofurfuryl acrylate effect for the poly[tetrahydrofurfuryl acrylate] in supercritical carbon dioxide and dimethyl ether. Journal of Supercritical Fluids, 2018, 135, 211-217.	3.2	11
20	Phase behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl methacrylate in supercritical carbon dioxide. Fluid Phase Equilibria, 2018, 462, 1-5.	2.5	6
21	Phase behavior of tetrahydrofurfuryl methacrylate and poly(tetrahydrofurfuryl methacrylate) in supercritical carbon dioxide. Journal of CO2 Utilization, 2018, 25, 39-45.	6.8	17
22	Phase behaviors for the poly(2-phenylethyl methacrylate) in supercritical fluid solvents: Experiment and PC-SAFT EoS. Journal of Industrial and Engineering Chemistry, 2018, 59, 403-409.	5.8	10
23	Stretchable, Implantable, Nanostructured Flow-Diverter System for Quantification of Intra-aneurysmal Hemodynamics. ACS Nano, 2018, 12, 8706-8716.	14.6	18
24	Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5377-5382.	7.1	137
25	Adsorption and separation properties of gallic acid imprinted polymers prepared using supercritical fluid technology. Journal of Supercritical Fluids, 2017, 120, 249-257.	3.2	11
26	Cloud-point measurement of binary and ternary mixtures for the P(MMA-co-PnFPA) in supercritical fluoric solvents. Journal of Supercritical Fluids, 2017, 120, 226-239.	3.2	20
27	Phase equilibria measurement of binary mixtures for triethylene glycol dimethacrylate and triethylene glycol diacrylate in supercritical CO2. Korean Journal of Chemical Engineering, 2017, 34, 1170-1176.	2.7	8
28	Liquid-liquid equilibrium of hydrogen bonding polymer solutions. Polymer, 2017, 121, 1-8.	3.8	10
29	Phase Behavior for the Poly(phenyl methacrylate) and Phenyl Methacrylate in Supercritical Carbon Dioxide and Dimethyl Ether. Journal of Chemical & Engineering Data, 2017, 62, 1876-1883.	1.9	15
30	Phase behavior of binary and ternary mixture for the poly(TBAEMA) and TBAEMA in supercritical solvents. Korean Journal of Chemical Engineering, 2017, 34, 2056-2064.	2.7	19
31	High pressure phase equilibria for the binary mixture of CO2+ 3-phenyl propionitrile and CO2+ 2-phenyl butyronitrile systems. Journal of Supercritical Fluids, 2017, 120, 218-225.	3.2	9
32	Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. Journal of Chemical Thermodynamics, 2016, 92, 191-197.	2.0	11
33	Phase Behavior for the CO ₂ + Methyl Methoxyacetate and CO ₂ + Methyl <i>trans</i> -3-Methoxyacrylate Systems at Pressures from (5 to 20) MPa and Various Temperatures. Journal of Chemical & Data, 2016, 61, 1101-1108.	1.9	8
34	Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles. Macromolecular Research, 2016, 24, 51-59.	2.4	16
35	Experimental measurement of solubility curves for poly(methyl methacrylate-co-pentafluorophenyl) Tj ETQq1 1 (0.784314 i 2.0	gBT /Overloc
36	Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures. Korean Journal of Chemical Engineering, 2016, 33, 277-284.	2.7	12

#	Article	IF	CITATIONS
37	Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide. Korean Chemical Engineering Research, 2016, 54, 206-212.	0.2	8
38	Phase behavior for the poly(2-methoxyethyl acrylate)+supercritical solvent+cosolvent mixture and CO2+2-methoxyethyl acrylate system at high pressure. Korean Journal of Chemical Engineering, 2015, 32, 958-966.	2.7	22
39	Phase behavior and characterization of the poly(methyl methacrylate-co-octafluoropentyl) Tj ETQq1 1 0.784314 2015, 396, 74-87.	rgBT /Ovei 2.5	rlock 10 Tf 5 19
40	Phase behaviour of binary and ternary mixtures for the poly(methyl methacrylate-co-hexafluorobutyl) Tj ETQq0 0 Thermodynamics, 2015, 82, 76-87.	0 rgBT /O\ 2.0	verlock 10 Tf 6
41	Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide. Korean Journal of Chemical Engineering, 2014, 31, 2266-2273.	2.7	20
42	Effect of cosolvent on the phase behavior of binary and ternary mixture for the poly(2-dimethylaminoethyl methacrylate) in supercritical solvents. Fluid Phase Equilibria, 2014, 381, 51-59.	2.5	18
43	Phase behavior for the poly[2-(2-ethoxyethoxy)ethyl acrylate] and 2-(2-ethoxyethoxy)ethyl acrylate in supercritical solvents. Journal of Supercritical Fluids, 2014, 86, 41-48.	3.2	7
44	Experimental measurement and correlation of phase behavior for the CO2+heptafluorobutyl acrylate and CO2+heptafluorobutyl methacrylate systems at high pressure. Korean Journal of Chemical Engineering, 2014, 31, 522-527.	2.7	17
45	Cloud-Point and Bubble-Point Measurement for the Poly(2-butoxyethyl acrylate) + Cosolvent Mixture and 2-Butoxyethyl Acrylate in Supercritical Fluid Solvents. Journal of Chemical & Engineering Data, 2014, 59, 1391-1399.	1.9	13
46	Phase equilibria for the 2-ethoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate in supercritical CO2 at various temperatures and pressures up to 20 MPa. Journal of Industrial and Engineering Chemistry, 2014, 20, 4163-4168.	5.8	15
47	Phase behavior of binary mixture for the isoalkyl acetate in supercritical carbon dioxide. Fluid Phase Equilibria, 2014, 365, 97-105.	2.5	10
48	Phase behaviour for the (carbon dioxide + 1,3-butanediol diacrylate) and (carbon dioxide +) Tj ETQq0 0 0 rgBT /O Thermodynamics, 2014, 71, 91-97.	verlock 10 2.0	Tf 50 307 T 29
49	Experimental measurement of cloud-point and bubble-point for the {poly(isobornyl methacrylate) + supercritical solvents + co-solvent} system at high pressure. Journal of Chemical Thermodynamics, 2014, 75, 25-32.	2.0	20
50	Bubble-point measurement for the CO2+diethylene glycol diacrylate and CO2+diethylene glycol dimethacrylate systems at high pressure. Korean Journal of Chemical Engineering, 2013, 30, 739-745.	2.7	19
51	High pressure phase behavior for binary mixture of 2-ethoxyethyl methacrylate and 2,3-epoxypropyl methacrylate in supercritical carbon dioxide. Fluid Phase Equilibria, 2013, 351, 18-24.	2.5	11
52	Effect of cosolvent on cloud-point of binary and ternary systems for the poly(4-chlorostyrene) + cosolvent mixtures in supercritical fluid solvents. Fluid Phase Equilibria, 2013, 351, 7-17.	2.5	6
53	Phase behavior measurement for poly(isobornyl acrylate) + cosolvent systems in supercritical solvents at high pressure. Journal of Supercritical Fluids, 2013, 79, 11-18.	3.2	10
54	Molecularly imprinted polymers for selective separation of acetaminophen and aspirin by using supercritical fluid technology. Chemical Engineering Journal, 2013, 226, 171-180.	12.7	26

#	Article	IF	Citations
55	Phase behavior for the poly(dimethylsiloxane) in supercritical fluid solvents. Journal of Industrial and Engineering Chemistry, 2013, 19, 665-669.	5.8	5
56	High pressure phase behavior for the binary mixture of pentafluoropropyl methacrylate and poly(pentafluoropropyl methacrylate) in supercritical carbon dioxide and dimethyl ether. Korean Journal of Chemical Engineering, 2012, 29, 413-419.	2.7	12
57	Phase equilibria for the binary mixture of n-vinyl pyrrolidone and N,N-dimethylacrylamide in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 2012, 18, 414-419.	5.8	9
58	High-Pressure Phase Behavior of Binary Mixtures of Octafluoropentyl Acrylate and Octafluoropentyl Methacrylate in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2011, 56, 4116-4122.	1.9	6
59	High pressure phase behavior for the binary mixture of valeronitrile, capronitrile and lauronitrile in supercritical carbon dioxide at temperatures from 313.2 to 393.2 K and pressures from 3.9 to 25.7 MPa. Fluid Phase Equilibria, 2011, 312, 93-100.	2.5	14
60	Phase behavior measurement for the binary mixture of CO2+ neopentyl glycol diacrylate and CO2+ neopentyl glycol dimethacrylate systems at high pressure. Fluid Phase Equilibria, 2011, 302, 234-240.	2.5	6
61	Isothermal vapor-liquid equilibria for the binary system of dimethyl ether (CH3OCH3)+ methanol (CH3OH). Korean Journal of Chemical Engineering, 2011, 28, 2324-2328.	2.7	12
62	Selective separation of aspirin using molecularly imprinted polymers. Separation and Purification Technology, 2010, 74, 144-153.	7.9	61
63	Phase behavior measurement for the ethylene glycol dimethacrylate in supercritical carbon dioxide at temperatures between (313.2 and 393.2) K and pressures from (5.8 to 22) MPa. Korean Journal of Chemical Engineering, 2010, 27, 1291-1295.	2.7	7
64	Phase behaviour for the (carbon dioxide+2-phenoxyethyl acrylate) and (carbon) Tj ETQq0 0 0 rgBT /Overlock 10 from (5 to 31)MPa. Journal of Chemical Thermodynamics, 2010, 42, 758-763.	Tf 50 387 2.0	Td (dioxide+2
65	Cosolvent effect on the phase behavior for the poly(benzyl acrylate) and poly(benzyl methacrylate) in supercritical carbon dioxide and dimethyl ether. Journal of Industrial and Engineering Chemistry, 2010, 16, 598-601.	5.8	6
66	High pressure phase behavior for the propionitrile and butyronitrile in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 2010, 16, 962-966.	5.8	10
67	Cloud-Point and Vaporâ [^] Liquid Behavior of Binary and Ternary Systems for the Poly(dodecyl acrylate) + Cosolvent and Dodecyl Acrylate in Supercritical Solvents. Journal of Chemical & Data, 2010, 55, 3684-3689.	1.9	11
68	Cloud point behavior for poly(isodecyl methacrylate)+supercritical solvents+cosolvent and vapor-liquid behavior for CO2+isodecyl methacrylate systems at high pressure. Korean Journal of Chemical Engineering, 2009, 26, 199-205.	2.7	13
69	High-Pressure Phase Behavior for Poly[dodecyl methacrylate] + Supercritical Solvents + Cosolvents and Carbon Dioxide + Dodecyl Methacrylate Mixture. Industrial & Engineering Chemistry Research, 2009, 48, 7821-7827.	3.7	17
70	Biodegradability of Chemically Modified Starch (RS4)/PVA Blend Films: Part 2. Journal of Polymers and the Environment, 2008, 16, 12-18.	5.0	59
71	Phase behavior on the binary and ternary mixtures of poly(isooctyl acrylate) + supercritical fluid solvents + isooctyl acrylate and CO ₂ + isooctyl acrylate system. Journal of Applied Polymer Science, 2008, 107, 1124-1132.	2.6	10
72	Phase Behavior for Mixtures of Poly(2-ethylhexyl acrylate) + 2-Ethylhexyl Acrylate and Poly(2-ethylhexyl methacrylate) + 2-Ethylhexyl Methacrylate with Supercritical Fluid Solvents. Journal of Chemical & Engineering Data, 2007, 52, 410-418.	1.9	29

#	Article	IF	Citations
73	High Pressure Phase Behavior of Carbon Dioxide + 2,2,2-Trifluoroethyl Methacrylate and + Poly(2,2,2-trifluoroethyl methacrylate) Systems. Journal of Chemical & Engineering Data, 2007, 52, 89-92.	1.9	17
74	High pressure phase behavior of poly[isopropyl acrylate] and poly[isopropyl methacrylate] in supercritical fluid (SCF) solvent and SCF solvent+cosolvent mixtures. Journal of Supercritical Fluids, 2007, 41, 482-491.	3.2	32
75	Phase Behavior of Binary and Ternary Mixtures of Poly(decyl acrylate)â^'Supercritical Solventsâ^'Decyl Acrylate and Poly(decyl methacrylate)â^'CO2â^'Decyl Methacrylate Systems. Industrial & Engineering Chemistry Research, 2006, 45, 3373-3380.	3.7	32
76	High-Pressure Phase Behavior for Pentyl Acrylate and Pentyl Methacrylate in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2006, 51, 1436-1440.	1.9	8
77	Cloud Points of Poly(ε-caprolactone), Poly(l-lactide), and Polystyrene in Supercritical Fluids. Industrial & Engineering Chemistry Research, 2006, 45, 3381-3387.	3.7	26
78	Cosolvent Effect and Solubility Measurement for Butyl (Meth)acrylate Polymers in Benign Environmental Supercritical Solvents. Industrial & Engineering Chemistry Research, 2006, 45, 3354-3365.	3.7	28
79	High-pressure phase behavior and modeling of binary mixtures for alkyl acetate in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 37, 323-332.	3.2	58
80	Cloud-point measurement of the biodegradable poly(d,l-lactide-co-glycolide) solution in supercritical fluid solvents. Korean Journal of Chemical Engineering, 2006, 23, 1003-1008.	2.7	21
81	Phase Behavior of the Binary Mixture of Cyclohexyl Acrylate and Cyclohexyl Methacrylate in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2005, 50, 385-389.	1.9	4
82	Thermodynamic phase behavior of fluoropolymer mixtures with supercritical fluid solvents. Korean Journal of Chemical Engineering, 2004, 21, 1193-1198.	2.7	5
83	Solubility in the binary and ternary system for poly(alkyl acrylate)-supercritical solvent mixtures. Korean Journal of Chemical Engineering, 2004, 21, 874-881.	2.7	15
84	Vapor-Liquid equilibria measurement of carbon dioxide+1-hexene and carbon dioxide+2-ethyl-1-butene systems at high pressure. Korean Journal of Chemical Engineering, 2004, 21, 1032-1037.	2.7	15
85	Phase behavior on the binary and ternary mixtures of poly(cyclohexyl acrylate) and poly(cyclohexyl) Tj ETQq1 1	0.784314 2.6	rgBT/Overloo
86	Phase behavior of the poly(vinyl pyrrolidone) + N-vinyl-2-pyrrolidone + carbon dioxide system. Journal of Supercritical Fluids, 2004, 30, 127-137.	3.2	42
87	Phase Behavior of the Poly[hexyl (meth)acrylate]â^'Supercritical Solventsâ^'Monomer Mixtures at High Pressures. Industrial & Engineering Chemistry Research, 2004, 43, 1543-1552.	3.7	21
88	High Pressure Phase Behavior of Carbon Dioxide + 1-Methyl-2-pyrrolidinone and Carbon Dioxide + 1-Ethyl-2-pyrrolidinone Systems. Journal of Chemical & Engineering Data, 2004, 49, 53-57.	1.9	18
89	Bubble-Point Measurement for CO2+ Vinyl Acetate and CO2+ Vinyl Acrylate Systems at High Pressures. Journal of Chemical & Data, 2003, 48, 97-101.	1.9	33
90	Phase Behavior of Carbon Dioxide + Methyl Acrylate and Carbon Dioxide + Ethyl Acrylate Systems at High Pressures. Journal of Chemical & Engineering Data, 2002, 47, 359-362.	1.9	13

#	Article	IF	CITATIONS
91	Effect of the octadecyl acrylate concentration on the phase behavior of poly(octadecyl) Tj ETQq1 1 0.784314 rgB 372-380.	「/Overloch 2.6	R 10 Tf 50 79 16
92	Monomer concentration effect on the phase behavior of poly(propyl acrylate) and poly(propyl) Tj ETQq0 0 0 rgBT 126-131.	/Overlock 2.7	10 Tf 50 70: 32
93	High pressure phase behavior for carbon dioxide-1-butanol and carbon dioxide-1-octanol systems. Korean Journal of Chemical Engineering, 2002, 19, 1007-1013.	2.7	21
94	Kinetic study of 3C-SiC growth on Si by pyrolyzing tetramethysilane in low pressure radio frequency-induction heated chemical vapor deposition reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 891-899.	2.1	17
95	Solubility of Poly(tetrafluoroethylene-co-19 mol % hexafluoropropylene) in Supercritical CO2 and Halogenated Supercritical Solvents. Macromolecules, 1996, 29, 6548-6555.	4.8	67
96	Computational discovery of novel human LMTK3 inhibitors by high throughput virtual screening using NCI database. Korean Journal of Chemical Engineering, 0, , .	2.7	0