List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8308851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-strength and low-modulus Ti–13Nb–7Sn–4Mo with β + α″ + α structure fabricated by cold rolling aging treatment. MRS Communications, 2022, 12, 130.	g and 9.8	0
2	Metastable dual-phase Ti–Nb–Sn–Zr and Ti–Nb–Sn–Fe alloys with high strength-to-modulus ratio. Materials Today Communications, 2022, 30, 103168.	0.9	4
3	Novel Metastable Nonequiatomic Ti-Zr-Nb-Mo Medium-Entropy Alloys with High Yield-Strength-to-Elastic-Modulus Ratios. Metals and Materials International, 2022, 28, 2563-2570.	1.8	7
4	Characterization of nanosized hydroxyapatite prepared by an aqueous precipitation method using eggshells and mulberry leaf extract. Journal of the Korean Ceramic Society, 2021, 58, 116-122.	1.1	9
5	Effects of Heat Treatments on the Structure and Mechanical Properties of Ti-25Nb-8Sn Alloy. Journal of Materials Engineering and Performance, 2021, 30, 2309-2315.	1.2	1
6	Effects of thermal treatments on the microstructures and mechanical properties of Ti–5Nb–5Mo alloys. Materials Today Communications, 2021, 26, 102059.	0.9	3
7	Structure and properties of Ti-rich Ti–Zr–Nb–Mo medium-entropy alloys. Journal of Alloys and Compounds, 2021, 868, 159137.	2.8	32
8	Porous Biphasic Calcium Phosphate Granules from Oyster Shell Promote the Differentiation of Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9444.	1.8	8
9	Preparation and characterization of microrod hydroxyapatite bundles obtained from oyster shells through microwave irradiation. Journal of the Australian Ceramic Society, 2021, 57, 1541-1551.	1.1	9
10	Structure and properties of metastable Ti–Nb–Sn–Mo alloys. MRS Communications, 2021, 11, 669.	0.8	5
11	Surface modification of nanotubular anodized Ti–7.5Mo alloy using NaOH treatment for biomedical application. Thin Solid Films, 2020, 710, 138273.	0.8	7
12	Characterization of Nano-Scale Hydroxyapatite Coating Synthesized from Eggshells Through Hydrothermal Reaction on Commercially Pure Titanium. Coatings, 2020, 10, 112.	1.2	23
13	Bone-like nano-hydroxyapatite coating on low-modulus Ti–5Nb–5Mo alloy using hydrothermal and post-heat treatments. Thin Solid Films, 2019, 687, 137463.	0.8	6
14	Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders. Journal of the Australian Ceramic Society, 2019, 55, 1051-1058.	1.1	18
15	Formation of nanotubular structure on low-modulus Ti–7.5Mo alloy surface and its bioactivity evaluation. Thin Solid Films, 2019, 669, 329-337.	0.8	4
16	Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Advanced Powder Technology, 2017, 28, 1154-1158.	2.0	58
17	Effect of different post-treatments on the bioactivity of alkali-treated Ti–5Si alloy. Bio-Medical Materials and Engineering, 2017, 28, 503-514.	0.4	7
18	Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys. Materials, 2017, 10, 458.	1.3	7

#	Article	IF	CITATIONS
19	Microstructure and Characteristics of Calcium Phosphate Layers on Bioactive Oxide Surfaces of Air-Sintered Titanium Foams after Immersion in Simulated Body Fluid. Materials, 2016, 9, 956.	1.3	12
20	Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content. Journal of Materials Engineering and Performance, 2016, 25, 1986-1992.	1.2	3
21	Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. Journal of Asian Ceramic Societies, 2016, 4, 85-90.	1.0	93
22	Effects of heat treatment on the synthesis of hydroxyapatite from eggshell powders. Ceramics International, 2015, 41, 10718-10724.	2.3	61
23	Preparation and characterization of porous calcium-phosphate microspheres. Ceramics International, 2015, 41, 7596-7604.	2.3	16
24	Machinability Evaluation of Ti-5Nb-xFe Alloys for Dental Applications. Journal of Materials Engineering and Performance, 2015, 24, 1332-1339.	1.2	2
25	Effects of chromium addition on structure and mechanical properties of Ti–5Mo alloy. Materials & Design, 2015, 65, 700-706.	5.1	18
26	Structure and mechanical properties of as-cast Ti–Si alloys. Intermetallics, 2014, 47, 11-16.	1.8	39
27	Structure and mechanical properties of as-cast Ti–5Sn–xCr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 157-164.	2.6	11
28	Effect of ball milling on properties of porous Ti–7.5Mo alloy for biomedical applications. Journal of Alloys and Compounds, 2014, 582, 793-801.	2.8	31
29	Fabrication and characterization of porous Ti–7.5Mo alloy scaffolds for biomedical applications. Journal of Materials Science: Materials in Medicine, 2013, 24, 645-657.	1.7	23
30	A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceramics International, 2013, 39, 8183-8188.	2.3	141
31	Structure and mechanical properties of as-cast Ti–5Nb-based alloy with Mo addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 579, 86-91.	2.6	16
32	Structure and mechanical properties of as-cast Ti–5Nb–xCr alloys. Materials & Design, 2013, 51, 268-273.	5.1	14
33	Design and characterization of highly porous titanium foams with bioactive surface sintering in air. Journal of Alloys and Compounds, 2013, 575, 326-332.	2.8	29
34	Processing and mechanical properties of porous Ti–7.5Mo alloy. Materials & Design, 2013, 47, 21-26.	5.1	42
35	Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceramics International, 2013, 39, 6467-6473.	2.3	130
36	The structure and mechanical properties of as-cast Ti–25Nb–xSn alloys for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 568, 1-7.	2.6	48

#	Article	IF	CITATIONS
37	Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications. Materials Science and Engineering C, 2012, 32, 517-522.	3.8	61
38	Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Materials Characterization, 2011, 62, 157-163.	1.9	39
39	Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Materials Characterization, 2011, 62, 526-534.	1.9	40
40	Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Materials Characterization, 2011, 62, 1180-1187.	1.9	100
41	Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride. Journal of Applied Electrochemistry, 2011, 41, 337-343.	1.5	8
42	Effect of water aging on the apatite formation of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. Journal of Materials Science, 2011, 46, 1369-1379.	1.7	9
43	Surface modification of a Ti–7.5Mo alloy using NaOH treatment and Bioglass® coating. Journal of Materials Science: Materials in Medicine, 2010, 21, 1479-1488.	1.7	20
44	Microstructure and grindability of as-cast Ti–Sn alloys. Journal of Materials Science, 2010, 45, 1830-1836.	1.7	35
45	Formation of calcium phosphates on low-modulus Ti–7.5Mo alloy by acid and alkali treatments. Journal of Materials Science, 2010, 45, 3661-3670.	1.7	18
46	Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys. Materials Characterization, 2010, 61, 851-858.	1.9	60
47	Structure and mechanical properties of Ti–5Cr based alloy with Mo addition. Materials Science and Engineering C, 2010, 30, 904-909.	3.8	23
48	Evaluation of the machinability of Ti–Sn alloys. Journal of Alloys and Compounds, 2010, 502, 112-117.	2.8	18
49	Structure, mechanical properties and grindability of dental Ti–10Zr–X alloys. Materials Science and Engineering C, 2009, 29, 36-43.	3.8	72
50	Surface modification of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. Surface and Coatings Technology, 2009, 203, 3142-3150.	2.2	43
51	Mechanical properties and deformation behavior of cast binary Ti–Cr alloys. Journal of Alloys and Compounds, 2009, 468, 533-538.	2.8	79
52	Mechanical properties and deformation behavior of Ti–5Cr–xFe alloys. Journal of Alloys and Compounds, 2009, 472, 546-550.	2.8	47
53	Evaluation of low-fusing porcelain bonded to dental cast Ti–Cr alloys. Journal of Alloys and Compounds, 2009, 474, 505-509.	2.8	25
54	Structure and grindability of cast Ti–5Cr–xFe alloys. Journal of Alloys and Compounds, 2009, 474, 578-583.	2.8	21

#	Article	IF	CITATIONS
55	Structure and grindability of dental Ti–Cr alloys. Journal of Alloys and Compounds, 2009, 476, 817-825.	2.8	37
56	Mechanical properties and deformation behavior of as-cast Ti–Sn alloys. Journal of Alloys and Compounds, 2009, 479, 390-394.	2.8	58
57	Effects of chromium addition on structure and mechanical properties of Ti–10Zr alloy. Journal of Alloys and Compounds, 2009, 484, 524-528.	2.8	41
58	Electrochemical behavior of Ti–Cr alloys in artificial saliva. Journal of Alloys and Compounds, 2009, 487, 439-444.	2.8	23
59	Structure, mechanical properties, and grindability of dental Ti–Zr alloys. Journal of Materials Science: Materials in Medicine, 2008, 19, 3179-3186.	1.7	207
60	A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys. Journal of Alloys and Compounds, 2008, 464, 580-583.	2.8	124