
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8308663/publications.pdf Version: 2024-02-01

LIN LIANC

#	Article	IF	CITATIONS
1	Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environmental Science & Technology, 2015, 49, 12941-12950.	4.6	954
2	Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?. Environmental Science & Technology, 2018, 52, 11276-11284.	4.6	517
3	Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process. Environmental Science & Technology, 2015, 49, 7330-7339.	4.6	490
4	Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. Water Research, 2017, 118, 196-207.	5.3	448
5	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mrow><mml:mtext>UV</mml:mtext></mml:mrow><mml:mo> mathvariant="normal">â^²</mml:mo></mml:mrow></mml:mrow> and <mml:math 2015.="" 80.<="" altimg.="" research.="" td="" water="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>/_{ś.3}mml:m</td><td>o><mml:rnr 294</mml:rnr </td></mml:math>	/ _{ś.3} mml:m	o> <mml:rnr 294</mml:rnr
6	Trace Cupric Species Triggered Decomposition of Peroxymonosulfate and Degradation of Organic Pollutants: Cu(III) Being the Primary and Selective Intermediate Oxidant. Environmental Science & Technology, 2020, 54, 4686-4694.	4.6	284
7	Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products. Water Research, 2016, 90, 15-23.	5.3	276
8	Oxidation of Sulfoxides and Arsenic(III) in Corrosion of Nanoscale Zero Valent Iron by Oxygen: Evidence against Ferryl Ions (Fe(IV)) as Active Intermediates in Fenton Reaction. Environmental Science & Technology, 2011, 45, 307-312.	4.6	263
9	Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. Water Research, 2017, 125, 209-218.	5.3	237
10	Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?. Water Research, 2018, 128, 393-401.	5.3	225
11	Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Research, 2020, 172, 115504.	5.3	219
12	Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Research, 2016, 96, 12-21.	5.3	212
13	Oxidation of Triclosan by Permanganate (Mn(VII)): Importance of Ligands and In Situ Formed Manganese Oxides. Environmental Science & Technology, 2009, 43, 8326-8331.	4.6	202
14	Oxidation of Phenolic Endocrine Disrupting Chemicals by Potassium Permanganate in Synthetic and Real Waters. Environmental Science & Technology, 2012, 46, 1774-1781.	4.6	196
15	Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment. Chemical Engineering Journal, 2019, 371, 842-847.	6.6	194
16	Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. Chemical Engineering Journal, 2018, 352, 1004-1013.	6.6	191
17	Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors. Water Research, 2017, 116, 182-193.	5.3	190
18	Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: Comparison to peroxydisulfate (PDS). Chemical Engineering Journal, 2018, 337, 40-50.	6.6	190

#	Article	IF	CITATIONS
19	Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. Environmental Science & Technology, 2020, 54, 14057-14065.	4.6	190
20	Oxidation Kinetics of Bromophenols by Nonradical Activation of Peroxydisulfate in the Presence of Carbon Nanotube and Formation of Brominated Polymeric Products. Environmental Science & Technology, 2017, 51, 10718-10728.	4.6	177
21	Role of Ligands in Permanganate Oxidation of Organics. Environmental Science & Technology, 2010, 44, 4270-4275.	4.6	174
22	Aggregation Kinetics of Manganese Dioxide Colloids in Aqueous Solution: Influence of Humic Substances and Biomacromolecules. Environmental Science & Technology, 2013, 47, 10285-10292.	4.6	170
23	Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling. Water Research, 2018, 138, 56-66.	5.3	156
24	Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals. Chemical Engineering Journal, 2017, 328, 236-245.	6.6	151
25	The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chemical Engineering Journal, 2018, 333, 11-19.	6.6	151
26	Aqueous Iron(IV)–Oxo Complex: An Emerging Powerful Reactive Oxidant Formed by Iron(II)-Based Advanced Oxidation Processes for Oxidative Water Treatment. Environmental Science & Technology, 2022, 56, 1492-1509.	4.6	142
27	New Insights into the Combination of Permanganate and Bisulfite as a Novel Advanced Oxidation Process: Importance of High Valent Manganese-Oxo Species and Sulfate Radical. Environmental Science & Technology, 2019, 53, 3689-3696.	4.6	135
28	Removal of Organoarsenic with Ferrate and Ferrate Resultant Nanoparticles: Oxidation and Adsorption. Environmental Science & amp; Technology, 2018, 52, 13325-13335.	4.6	133
29	Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption. Water Research, 2018, 147, 264-275.	5.3	129
30	Enhanced Permanganate Oxidation of Sulfamethoxazole and Removal of Dissolved Organics with Biochar: Formation of Highly Oxidative Manganese Intermediate Species and in Situ Activation of Biochar. Environmental Science & Technology, 2019, 53, 5282-5291.	4.6	127
31	Oxidation of Bromophenols and Formation of Brominated Polymeric Products of Concern during Water Treatment with Potassium Permanganate. Environmental Science & Technology, 2014, 48, 10850-10858.	4.6	125
32	Novel Nonradical Oxidation of Sulfonamide Antibiotics with Co(II)-Doped g-C ₃ N ₄ -Activated Peracetic Acid: Role of High-Valent Cobalt–Oxo Species. Environmental Science & Technology, 2021, 55, 12640-12651.	4.6	115
33	Understanding the Role of Manganese Dioxide in the Oxidation of Phenolic Compounds by Aqueous Permanganate. Environmental Science & Technology, 2015, 49, 520-528.	4.6	114
34	Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant. Environmental Science & Technology, 2018, 52, 13897-13907.	4.6	106
35	Insights into the oxidation of organic contaminants by Co(II) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species. Water Research, 2021, 201, 117313.	5.3	106
36	Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability. Water Research, 2019, 148, 115-125.	5.3	98

#	Article	IF	CITATIONS
37	Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates. Water Research, 2021, 193, 116856.	5.3	97
38	Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes. Chemical Engineering Journal, 2018, 344, 12-20.	6.6	96
39	Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: Kinetics, products, and antibacterial deactivation. Water Research, 2018, 145, 210-219.	5.3	95
40	Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation. Chemical Engineering Journal, 2020, 387, 123726.	6.6	95
41	Comparative study on degradation of propranolol and formation of oxidation products by UV/H2O2 and UV/persulfate (PDS). Water Research, 2019, 149, 543-552.	5.3	93
42	Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chemical Engineering Journal, 2020, 391, 123560.	6.6	92
43	Oxidation of Flame Retardant Tetrabromobisphenol A by Aqueous Permanganate: Reaction Kinetics, Brominated Products, and Pathways. Environmental Science & Technology, 2014, 48, 615-623.	4.6	90
44	Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV). Water Research, 2019, 156, 1-8.	5.3	90
45	Adsorption and Oxidation of Thallium(I) by a Nanosized Manganese Dioxide. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	88
46	Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes. Water Research, 2019, 164, 114957.	5.3	86
47	Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter. Environmental Science & Technology, 2017, 51, 479-487.	4.6	80
48	Does Soluble Mn(III) Oxidant Formed in Situ Account for Enhanced Transformation of Triclosan by Mn(VII) in the Presence of Ligands?. Environmental Science & Technology, 2018, 52, 4785-4793.	4.6	76
49	Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. Water Research, 2015, 68, 750-758.	5.3	75
50	Kinetics of Oxidation of Iodide (I [–]) and Hypoiodous Acid (HOI) by Peroxymonosulfate (PMS) and Formation of Iodinated Products in the PMS/I [–] /NOM System. Environmental Science and Technology Letters, 2017, 4, 76-82.	3.9	73
51	Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate. Chemical Engineering Journal, 2020, 379, 122378.	6.6	73
52	Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Research, 2018, 147, 321-330.	5.3	70
53	ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate. Environmental Science & Technology, 2015, 49, 11764-11771.	4.6	66
54	Unrecognized role of bisulfite as Mn(III) stabilizing agent in activating permanganate (Mn(VII)) for enhanced degradation of organic contaminants. Chemical Engineering Journal, 2017, 327, 418-422.	6.6	66

#	Article	IF	CITATIONS
55	Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Research, 2018, 131, 208-217.	5.3	64
56	Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. Environmental Science & Technology, 2016, 50, 9608-9618.	4.6	62
57	Nonradical transformation of sulfamethoxazole by carbon nanotube activated peroxydisulfate: Kinetics, mechanism and product toxicity. Chemical Engineering Journal, 2019, 378, 122147.	6.6	62
58	Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide. Water Research, 2018, 143, 47-55.	5.3	59
59	Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Research, 2019, 153, 200-207.	5.3	57
60	Formation and control of bromate in sulfate radical-based oxidation processes for the treatment of waters containing bromide: A critical review. Water Research, 2020, 176, 115725.	5.3	56
61	Hydrated electron (eaqâ^') generation from phenol/UV: Efficiency, influencing factors, and mechanism. Applied Catalysis B: Environmental, 2017, 200, 585-593.	10.8	55
62	Degradation of iopamidol by three UV-based oxidation processes: Kinetics, pathways, and formation of iodinated disinfection byproducts. Chemosphere, 2019, 221, 270-277.	4.2	55
63	Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions. Water Research, 2020, 177, 115752.	5.3	51
64	Hydroxylamine driven advanced oxidation processes for water treatment: A review. Chemosphere, 2021, 262, 128390.	4.2	51
65	Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of manganese products. Water Research, 2021, 203, 117513.	5.3	51
66	Oxidation of 2,4-bromophenol by UV/PDS and formation of bromate and brominated products: A comparison to UV/H2O2. Chemical Engineering Journal, 2019, 358, 1342-1350.	6.6	50
67	Reaction kinetics and transformation of antipyrine chlorination with free chlorine. Water Research, 2013, 47, 2830-2842.	5.3	49
68	Transformation of substituted anilines by ferrate(VI): Kinetics, pathways, and effect of dissolved organic matter. Chemical Engineering Journal, 2018, 332, 245-252.	6.6	49
69	Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2. Science of the Total Environment, 2021, 765, 142762.	3.9	46
70	Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2. Chemosphere, 2018, 193, 655-663.	4.2	44
71	Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 2017, 168, 264-271.	4.2	43
72	Quantitative evaluation of relative contribution of high-valent iron species and sulfate radical in Fe(VI) enhanced oxidation processes via sulfur reducing agents activation. Chemical Engineering Journal, 2020, 387, 124077.	6.6	43

#	Article	IF	CITATIONS
73	Transformation of phenolic compounds by peroxymonosulfate in the presence of iodide and formation of iodinated aromatic products. Chemical Engineering Journal, 2018, 335, 855-864.	6.6	38
74	Deposition Kinetics of Colloidal Manganese Dioxide onto Representative Surfaces in Aquatic Environments: The Role of Humic Acid and Biomacromolecules. Environmental Science & Technology, 2019, 53, 146-156.	4.6	38
75	A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials, 2021, 403, 123834.	6.5	36
76	Sulfite enhanced transformation of iopamidol by UV photolysis in the presence of oxygen: Role of oxysulfur radicals. Water Research, 2021, 189, 116625.	5.3	34
77	Oxidation of inorganic compounds by aqueous permanganate: Kinetics and initial electron transfer steps. Separation and Purification Technology, 2017, 183, 350-357.	3.9	32
78	Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes. Chemical Engineering Journal, 2018, 333, 200-205.	6.6	32
79	Transformation of bisphenol AF and bisphenol S by permanganate in the absence/presence of iodide: Kinetics and products. Chemosphere, 2019, 217, 402-410.	4.2	32
80	Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration. Chemosphere, 2017, 189, 1-9.	4.2	31
81	Interpreting the effects of natural organic matter on antimicrobial activity of Ag2S nanoparticles with soft particle theory. Water Research, 2018, 145, 12-20.	5.3	31
82	Transformation of Methylparaben by aqueous permanganate in the presence of iodide: Kinetics, modeling, and formation of iodinated aromatic products. Water Research, 2018, 135, 75-84.	5.3	29
83	Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants. Chemosphere, 2019, 228, 602-610.	4.2	29
84	Enhanced transformation of organic pollutants by mild oxidants in the presence of synthetic or natural redox mediators: A review. Water Research, 2021, 189, 116667.	5.3	29
85	Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts. Water Research, 2020, 185, 116234.	5.3	28
86	Effective activation of peroxymonosulfate with natural manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols. Journal of Hazardous Materials, 2021, 417, 126152.	6.5	28
87	Activated carbon as an insoluble electron shuttle to enhance the anaerobic ammonium oxidation coupled with Fe(III) reduction process. Environmental Research, 2022, 204, 111972.	3.7	27
88	Comment on "Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen― Environmental Science & Technology, 2008, 42, 5377-5377.	4.6	25
89	Hydrated electron (e aq â^') generation from p -benzoquinone/UV: Combined experimental and theoretical study. Applied Catalysis B: Environmental, 2017, 212, 150-158.	10.8	25
90	Chlorination and bromination of olefins: Kinetic and mechanistic aspects. Water Research, 2020, 187, 116424.	5.3	25

#	Article	IF	CITATIONS
91	Impacts of COVID-19 pandemic on the aquatic environment associated with disinfection byproducts and pharmaceuticals. Science of the Total Environment, 2022, 811, 151409.	3.9	25
92	Oxidation of iodide and hypoiodous acid by non-chlorinated water treatment oxidants and formation of iodinated organic compounds: A review. Chemical Engineering Journal, 2020, 386, 123822.	6.6	24
93	Mn2+ effect on manganese oxides (MnOx) nanoparticles aggregation in solution: Chemical adsorption and cation bridging. Environmental Pollution, 2020, 267, 115561.	3.7	24
94	A review on advanced oxidation processes homogeneously initiated by copper(II). Chemical Engineering Journal, 2022, 427, 131721.	6.6	24
95	Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols. Chemosphere, 2019, 235, 104-112.	4.2	23
96	Oxidation of methylparaben (MeP) and p‑hydroxybenzoic acid (p-HBA) by manganese dioxide (MnO2) and effects of iodide: Efficiency, products, and toxicity. Science of the Total Environment, 2019, 661, 670-677.	3.9	23
97	Evidence for the involvement of Fe(IV) in water treatment by Fe(III)-activated sulfite. Environmental Chemistry Letters, 2022, 20, 91-99.	8.3	23
98	Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products. Chemosphere, 2018, 208, 559-568.	4.2	22
99	New Insight into the Oxidation of Arsenite by the Reaction of Zerovalent Iron and Oxygen. Comment on "pH Dependence of Fenton Reagent Generation and As(III) Oxidation and Removal by Corrosion of Zero Valent Iron in Aerated Waterâ€: Environmental Science & Technology, 2009, 43, 3978-3979.	4.6	21
100	Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	21
101	Mechanical Insights into Activation of Peroxides by Quinones: Formation of Oxygen-Centered Radicals or Singlet Oxygen. Environmental Science & Technology, 2022, 56, 8776-8783.	4.6	20
102	Adsorptive Fractionation of Humic Acid at Airâ^'Water Interfaces. Environmental Science & Technology, 2007, 41, 4959-4964.	4.6	19
103	Bisulfite activated permanganate for oxidative water decontamination. Water Research, 2022, 216, 118331.	5.3	19
104	Atomically dispersed cobalt on carbon nitride for peroxymonosulfate activation: Switchable catalysis enabled by light irradiation. Chemical Engineering Journal, 2022, 446, 137277.	6.6	19
105	Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes. Chemical Engineering Journal, 2022, 447, 137551.	6.6	19
106	Comment on "Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes― Environmental Science & Technology, 2009, 43, 3398-3399.	4.6	18
107	Thallium(I) Oxidation by Permanganate and Chlorine: Kinetics and Manganese Dioxide Catalysis. Environmental Science & Technology, 2020, 54, 7205-7216.	4.6	18
108	Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances. Chinese Chemical Letters, 2022, 33, 71-79.	4.8	18

#	Article	IF	CITATIONS
109	Factors affecting formation of deethyl and deisopropyl products from atrazine degradation in UV/H ₂ O ₂ and UV/PDS. RSC Advances, 2017, 7, 29255-29262.	1.7	16
110	Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. Science of the Total Environment, 2022, 823, 153679.	3.9	16
111	Carbon Materials Inhibit Formation of Nitrated Aromatic Products in Treatment of Phenolic Compounds by Thermal Activation of Peroxydisulfate in the Presence of Nitrite. Environmental Science & Technology, 2019, 53, 9054-9062.	4.6	15
112	Aggregation Kinetics of Manganese Oxides Formed from permanganate activated by (Bi)sulfite: Dual Role of Ca2+ and MnII/III. Water Research, 2019, 159, 454-463.	5.3	15
113	A novel diagnostic method for distinguishing between Fe(IV) and •OH by using atrazine as a probe: Clarifying the nature of reactive intermediates formed by nitrilotriacetic acid assisted Fenton-like reaction. Journal of Hazardous Materials, 2021, 417, 126030.	6.5	15
114	Insights into the effects of alcohols on hydrated electron (eaqâ^') generation from the p-benzoquinone/UV process. Applied Catalysis B: Environmental, 2018, 220, 477-487.	10.8	14
115	Cadmium removal with thiosulfate/permanganate (TS/Mn(VII)) system: MnO2 adsorption and/or CdS formation. Chemical Engineering Journal, 2020, 380, 122585. Mechanism, Rinetics and DBP formation of UV/ <mn:math< td=""><td>6.6</td><td>14</td></mn:math<>	6.6	14
116	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"> < mml:mrow> < mml:msub> < mml:mrow> < mml:miow> < mml:mi mathvariant="bold-italic"> N < /mml:mi> < /mml:mrow> < mml:mrow> < mml:mi mathvariant="bold-italic"> H < /mml:mi> < /mml:mrow> < /mml:mrow> < mml:mn> 2 < /mml:mn> < /mml:msub> < mml:mrow	6.6 bw> <mml:< td=""><td>14 mi</td></mml:<>	14 mi
117	mathvariant="bold-italic">C <mml:mrow><mml:mi mathvariant="bold-italic">I< The bromate formation accompanied by the degradation of 2,4-bromophenol in UV/peroxymonosulfate. Separation and Purification Technology, 2020, 233, 116028.</mml:mi </mml:mrow>	3.9	13
118	Reduction-induced aggregation of manganese dioxide colloids by guaiacol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 106-112.	2.3	12
119	Dechlorination of chlorophenols mediated by carbon nanotubes in the presence of oxygen. Carbon, 2009, 47, 2115-2117.	5.4	11
120	The Confounding Effects of Dissolved Humic Acid on the Oxidation of Simple Substituted Phenols by Permanganate: Comment on "Reinvestigation of the Role of Humic Acid in the Oxidation of Phenols by Permanganate― Environmental Science & Technology, 2014, 48, 6518-6519.	4.6	11
121	Reduction-induced aggregation and/or dissolution of MnO2 colloids by organics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 485-490.	2.3	11
122	Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids. Frontiers of Environmental Science and Engineering, 2015, 9, 105-111.	3.3	11
123	Unrecognized role of humic acid as a reductant in accelerating fluoroquinolones oxidation by aqueous permanganate. Chinese Chemical Letters, 2022, 33, 447-451.	4.8	11
124	Transformation and detoxification of sulfamethoxazole by permanganate (Mn(VII)) in the presence of phenolic humic constituents. Chemical Engineering Journal, 2021, 413, 127534.	6.6	11
125	Iodine Atom or Hypoiodous Acid? Comment on "Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate–Iodide Metal-Free Oxidation: Role of Iodine Atoms― Environmental Science & Technology, 2017, 51, 9410-9411.	4.6	8
126	The aggregation kinetics of manganese oxides nanoparticles in Al(III) electrolyte solutions: Roles of distinct Al(III) species and natural organic matters. Science of the Total Environment, 2020, 744, 140814.	3.9	8

#	Article	IF	CITATIONS
127	Are free radicals actually responsible for enhanced oxidation of contaminants by Cr(VI) in the presence of bisulfite?. Chemosphere, 2020, 248, 126000.	4.2	8
128	Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment. Frontiers in Microbiology, 2022, 13, 895409.	1.5	8
129	Formation of nitrosated and nitrated aromatic products of concerns in the treatment of phenols by the combination of peroxymonosulfate and hydroxylamine. Chemosphere, 2021, 282, 131057.	4.2	7
130	A novel strategy using peroxymonosulfate to control the formation of iodinated aromatic products in treatment of phenolic compounds by permanganate. Environmental Science: Water Research and Technology, 2019, 5, 1515-1522.	1.2	6
131	Theoretical insight into the initial reaction of ozone with peroxide: Single electron transfer or adduct formation. Chemical Engineering Journal, 2022, 429, 132308.	6.6	4
132	Oxidation of diclofenac by permanganate: Kinetics, products and effect of inorganic reductants. Chinese Chemical Letters, 2023, 34, 107610.	4.8	3
133	Degradation of metoprolol by UV/sulfite as an advanced oxidation or reduction process: The significant role of oxygen. Journal of Environmental Sciences, 2023, 128, 107-116.	3.2	2
134	New insights into atrazine degradation by the novel manganese dioxide/bisulfite system: Product formation and Mn reuse. Journal of Cleaner Production, 2022, 368, 133106.	4.6	2
135	Ammonia-oxidizing microbes and biological ammonia removal in drinking water treatment. Environmental Science: Water Research and Technology, 0, , .	1.2	1