
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8308011/publications.pdf Version: 2024-02-01

VELE SUN

#	Article	IF	CITATIONS
1	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
2	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	1.5	1,773
3	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	4.6	1,524
4	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	1.9	764
5	Chemical Characteristics of PM2.5and PM10in Hazeâ^Fog Episodes in Beijing. Environmental Science & Technology, 2006, 40, 3148-3155.	4.6	727
6	An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Science and Technology, 2011, 45, 780-794.	1.5	675
7	The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment, 2005, 39, 3771-3784.	1.9	585
8	Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4380-4398.	1.2	581
9	The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environment, 2004, 38, 5991-6004.	1.9	532
10	Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 2017, 4, 810-833.	4.6	524
11	Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2013, 13, 4577-4592.	1.9	507
12	Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1581-1602.	1.9	378
13	The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 2013, 77, 927-934.	1.9	330
14	Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15, 10149-10165.	1.9	324
15	Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 8933-8945.	1.9	322
16	The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 2006, 40, 6579-6591.	1.9	309
17	Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmospheric Environment, 2012, 51, 250-259.	1.9	296
18	Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric Chemistry and Physics, 2016, 16, 8309-8329.	1.9	288

#	Article	IF	CITATIONS
19	Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Environment, 2010, 44, 131-140.	1.9	242
20	Speciation of "brown―carbon in cloud water impacted by agricultural biomass burning in eastern China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7389-7399.	1.2	231
21	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 2018, 18, 7423-7438.	1.9	208
22	Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4809-4822.	1.9	205
23	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	1.9	203
24	Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics, 2015, 15, 8165-8178.	1.9	192
25	Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China. Environmental Science & Technology, 2017, 51, 762-770.	4.6	179
26	East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EASTâ€AIR _{CPC}). Journal of Geophysical Research D: Atmospheres, 2019, 124, 13026-13054.	1.2	175
27	Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Scientific Reports, 2016, 6, 27151.	1.6	162
28	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	5.8	161
29	Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environmental Chemistry, 2012, 9, 221.	0.7	159
30	"APEC Blueâ€: Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports, 2016, 6, 20668.	1.6	155
31	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	1.2	155
32	Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. Journal of Environmental Sciences, 2008, 20, 1323-1327.	3.2	153
33	Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES. Atmospheric Chemistry and Physics, 2012, 12, 8131-8156.	1.9	146
34	Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010. Atmospheric Chemistry and Physics, 2012, 12, 7591-7607.	1.9	144
35	Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 8359-8375.	1.9	141
36	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	5.4	139

#	Article	IF	CITATIONS
37	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	3.9	138
38	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 6107-6123.	1.9	137
39	Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environmental Pollution, 2017, 223, 605-615.	3.7	136
40	Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. Journal of Geophysical Research, 2005, 110, .	3.3	135
41	Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry. Journal of Geophysical Research, 2012, 117, .	3.3	133
42	An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the United States of America, 2020, 117, 3960-3966.	3.3	132
43	Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food, 2020, 1, 648-658.	6.2	131
44	Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city. Atmospheric Chemistry and Physics, 2009, 9, 7519-7530.	1.9	128
45	Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 2021, 12, 1993.	5.8	128
46	Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects. Atmospheric Chemistry and Physics, 2015, 15, 6023-6034.	1.9	126
47	Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry. Environmental Science & Technology, 2015, 49, 11340-11347.	4.6	124
48	Water-soluble part of the aerosol in the dust storm season—evidence of the mixing between mineral and pollution aerosols. Atmospheric Environment, 2005, 39, 7020-7029.	1.9	123
49	Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 3095-3111.	1.9	119
50	The chemistry of precipitation and its relation to aerosol in Beijing. Atmospheric Environment, 2005, 39, 3397-3406.	1.9	118
51	Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study. Atmospheric Chemistry and Physics, 2015, 15, 13681-13698.	1.9	117
52	Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics, 2015, 15, 1331-1349.	1.9	116
53	Characterization and Source Apportionment of Water-Soluble Organic Matter in Atmospheric Fine Particles (PM _{2.5}) with High-Resolution Aerosol Mass Spectrometry and GC–MS. Environmental Science & Technology, 2011, 45, 4854-4861.	4.6	114
54	Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 8537-8551.	1.9	112

#	Article	IF	CITATIONS
55	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	1.9	110
56	Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and Technology, 2012, 46, 1201-1218.	1.5	102
57	Synergetic formation of secondary inorganic and organic aerosol: effect of SO ₂ and NH ₃ on particle formation and growth. Atmospheric Chemistry and Physics, 2016, 16, 14219-14230.	1.9	102
58	The evolution of chemical components of aerosols at five monitoring sites of China during dust storms. Atmospheric Environment, 2007, 41, 1091-1106.	1.9	100
59	Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.	1.9	100
60	A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,784.	1.2	98
61	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
62	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	1.9	96
63	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)â€. Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	1.9	95
64	Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. Scientific Reports, 2015, 5, 9845.	1.6	94
65	Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmospheric Environment, 2006, 40, 2973-2985.	1.9	93
66	Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2508-2521.	1.2	93
67	Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12708-12722.	1.2	91
68	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260†m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	1.9	90
69	Contrasting physical properties of black carbon in urban Beijing between winter and summer. Atmospheric Chemistry and Physics, 2019, 19, 6749-6769.	1.9	89
70	Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. Journal of Geophysical Research, 2010, 115, .	3.3	87
71	Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. Environmental Science & Technology, 2020, 54, 3849-3860.	4.6	85
72	Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Science of the Total Environment, 2018, 622-623, 1327-1342.	3.9	84

#	Article	IF	CITATIONS
73	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	1.9	84
74	Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Environmental Pollution, 2018, 243, 1579-1587.	3.7	78
75	Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China. Atmospheric Chemistry and Physics, 2011, 11, 9735-9747.	1.9	77
76	Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
77	Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China. Atmospheric Environment, 2006, 40, 3251-3262.	1.9	74
78	Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution, 2019, 255, 113345.	3.7	74
79	Microfluidic Electrochemical Sensor for On-Line Monitoring of Aerosol Oxidative Activity. Journal of the American Chemical Society, 2012, 134, 10562-10568.	6.6	73
80	Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 165-179.	1.9	73
81	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	1.5	72
82	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC ³ Exp campaign: implications for cloud condensation nuclei parameterization. Atmospheric Chemistry and Physics, 2014, 14, 13423-13437.	1.9	71
83	Modeling study of surface ozone source-receptor relationships in East Asia. Atmospheric Research, 2016, 167, 77-88.	1.8	71
84	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 675-689.	1.9	70
85	Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2495-2509.	1.9	69
86	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	3.9	67
87	Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017, 17, 14821-14839.	1.9	66
88	Chemical processing of water-soluble species and formation of secondary organic aerosol in fogs. Atmospheric Environment, 2019, 200, 158-166.	1.9	66
89	Secondary Formation of Sulfate and Nitrate during a Haze Episode in Megacity Beijing, China. Aerosol and Air Quality Research, 2015, 15, 2246-2257.	0.9	65
90	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64

#	Article	IF	CITATIONS
91	Characteristics and sources of 2002 super dust storm in Beijing. Science Bulletin, 2004, 49, 698-705.	1.7	63
92	Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC. Atmospheric Chemistry and Physics, 2009, 9, 3523-3546.	1.9	62
93	Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Science of the Total Environment, 2019, 648, 253-262.	3.9	62
94	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	1.9	62
95	Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004. Journal of Geophysical Research, 2010, 115, .	3.3	61
96	Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,964.	1.2	61
97	Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime. Atmospheric Environment, 2015, 123, 339-349.	1.9	60
98	Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates. Science of the Total Environment, 2017, 607-608, 339-350.	3.9	59
99	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Technology, 2017, 51, 7842-7852.	4.6	58
100	Field characterization of the PM _{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fineÂparticles in eastern China. Atmospheric Chemistry and Physics, 2017, 17, 14501-14517.	1.9	58
101	Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmospheric Environment, 2016, 130, 64-73.	1.9	57
102	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	1.9	57
103	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	1.7	57
104	Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves. Atmospheric Chemistry and Physics, 2017, 17, 1259-1270.	1.9	56
105	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	1.2	56
106	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760.	3.9	56
107	Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmospheric Measurement Techniques, 2020, 13, 1181-1193.	1.2	56
108	Long-term characterization of aerosol chemistry in cold season from 2013 to 2020 in Beijing, China. Environmental Pollution, 2021, 268, 115952.	3.7	56

#	Article	IF	CITATIONS
109	Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2012, 12, 2215-2227.	1.9	55
110	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017, 51, 14072-14082.	4.6	55
111	Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 5239-5251.	1.9	55
112	Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and <i>l±</i> -dicarbonyls in PM _{2.5} from Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2749-2767.	1.9	55
113	Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmospheric Chemistry and Physics, 2018, 18, 13947-13967.	1.9	54
114	Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Scientific Reports, 2017, 7, 335.	1.6	53
115	Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. Science of the Total Environment, 2017, 593-594, 462-469.	3.9	53
116	High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmospheric Chemistry and Physics, 2019, 19, 5605-5613.	1.9	53
117	Simultaneous measurements of particle number size distributions at ground level and 260â€ m on a meteorological tower in urban Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 6797-6811.	1.9	52
118	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere, 2017, 8, 62.	1.0	52
119	Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environmental Pollution, 2021, 272, 116031.	3.7	52
120	Molecular Markers of Secondary Organic Aerosol in Mumbai, India. Environmental Science & Technology, 2016, 50, 4659-4667.	4.6	51
121	Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Scientific Reports, 2016, 6, 29618.	1.6	50
122	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	4.2	50
123	A case study of aerosol processing and evolution in summer in New York City. Atmospheric Chemistry and Physics, 2011, 11, 12737-12750.	1.9	49
124	Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9591-9605.	1.2	49
125	Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 6907-6921.	1.9	49
126	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	1.9	49

#	Article	IF	CITATIONS
127	Mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006. Atmospheric Environment, 2010, 44, 3394-3403.	1.9	48
128	Chemical characterization of aerosols at the summit of Mountain Tai in Central East China. Atmospheric Chemistry and Physics, 2011, 11, 7319-7332.	1.9	48
129	Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 11739-11752.	1.9	48
130	Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes. Atmospheric Chemistry and Physics, 2019, 19, 6949-6967.	1.9	48
131	Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmospheric Chemistry and Physics, 2019, 19, 1327-1342.	1.9	47
132	Source apportionment for urban PM10 and PM2.5 in the Beijing area. Science Bulletin, 2007, 52, 608-615.	1.7	46
133	Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 865-880.	1.9	46
134	Growth rates of fine aerosol particles at a site near Beijing in June 2013. Advances in Atmospheric Sciences, 2018, 35, 209-217.	1.9	45
135	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	1.9	45
136	Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. Journal of Geophysical Research, 2012, 117, .	3.3	44
137	Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014. Environmental Pollution, 2017, 230, 963-973.	3.7	44
138	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	1.1	44
139	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	3.9	43
140	Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India. Environmental Pollution, 2016, 219, 957-966.	3.7	42
141	Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmospheric Chemistry and Physics, 2016, 16, 5413-5425.	1.9	42
142	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	1.2	42
143	The vertical variability of ammonia in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 16385-16398.	1.9	42
144	Persistent Nonagricultural and Periodic Agricultural Emissions Dominate Sources of Ammonia in Urban Beijing: Evidence from ¹⁵ N Stable Isotope in Vertical Profiles. Environmental Science & Technology, 2020, 54, 102-109.	4.6	42

#	Article	IF	CITATIONS
145	Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmospheric Environment, 2021, 246, 118112.	1.9	42
146	Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20052.	0.8	41
147	Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 10811-10824.	1.9	41
148	Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing. Atmospheric Environment, 2015, 119, 294-303.	1.9	41
149	Technical note: Boundary layer height determination from lidar for improving air pollution episode modeling: development of new algorithm and evaluation. Atmospheric Chemistry and Physics, 2017, 17, 6215-6225.	1.9	41
150	Changes of Emission Sources to Nitrate Aerosols in Beijing After the Clean Air Actions: Evidence From Dual Isotope Compositions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031998.	1.2	41
151	A modeling study of source–receptor relationships in atmospheric particulate matter over Northeast Asia. Atmospheric Environment, 2014, 91, 40-51.	1.9	40
152	High-resolution vertical distribution and sources of HONO and NO ₂ in the nocturnal boundary layer in urban Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 5071-5092.	1.9	40
153	Limited formation of isoprene epoxydiolsâ€derived secondary organic aerosol under NO _x â€rich environments in Eastern China. Geophysical Research Letters, 2017, 44, 2035-2043.	1.5	39
154	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,723.	1.2	39
155	Impact of Arctic amplification on declining spring dust events in East Asia. Climate Dynamics, 2020, 54, 1913-1935.	1.7	39
156	Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 901-914.	1.9	39
157	Molecular Characterization and Seasonal Variation in Primary and Secondary Organic Aerosols in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,394.	1.2	38
158	Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015. Environmental Science and Technology Letters, 2019, 6, 389-395.	3.9	38
159	Investigating secondary organic aerosol formation pathways in China during 2014. Atmospheric Environment, 2019, 213, 133-147.	1.9	38
160	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	1.9	38
161	Variation of sources and mixing mechanism of mineral dust with pollution aerosol—revealed by the two peaks of a super dust storm in Beijing. Atmospheric Research, 2007, 84, 265-279.	1.8	37
162	Characterization of submicron aerosols at a suburban site in central China. Atmospheric Environment, 2016, 131, 115-123.	1.9	37

#	Article	IF	CITATIONS
163	Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. Environmental Science & Technology, 2020, 54, 15710-15721.	4.6	37
164	Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 5771-5785.	1.9	37
165	Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China. Environmental Pollution, 2018, 237, 285-297.	3.7	36
166	Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. Atmospheric Chemistry and Physics, 2020, 20, 117-137.	1.9	36
167	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	1.9	36
168	Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9499-9509.	1.2	35
169	Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 6049-6065.	1.2	35
170	Response of aerosol composition to different emission scenarios in Beijing, China. Science of the Total Environment, 2016, 571, 902-908.	3.9	35
171	Assessment of the impacts of aromatic VOC emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ. Atmospheric Environment, 2017, 158, 105-115.	1.9	35
172	Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 7531-7552.	1.9	35
173	Chemical apportionment of aerosol optical properties during the Asiaâ€Pacific Economic Cooperation summit in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,281.	1.2	34
174	Diel variation in mercury stable isotope ratios records photoreduction of PM _{2.5} -bound mercury. Atmospheric Chemistry and Physics, 2019, 19, 315-325.	1.9	34
175	Important Role of NO ₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower. Environmental Science & Technology, 2022, 56, 6870-6879.	4.6	34
176	Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 2020, 20, 915-929.	1.9	33
177	Light absorption of black carbon and brown carbon in winter in North China Plain: comparisons between urban and rural sites. Science of the Total Environment, 2021, 770, 144821.	3.9	33
178	Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. Atmospheric Chemistry and Physics, 2020, 20, 7595-7615.	1.9	33
179	Mixing state and sources of submicron regional background aerosols in the northern Qinghai–Tibet Plateau and the influence of biomass burning. Atmospheric Chemistry and Physics, 2015, 15, 13365-13376.	1.9	32
180	Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Scientific Reports, 2016, 6, 27481.	1.6	32

#	Article	IF	CITATIONS
181	Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. Journal of Environmental Sciences, 2017, 54, 142-151.	3.2	32
182	Photochemical impacts of haze pollution in an urban environment. Atmospheric Chemistry and Physics, 2019, 19, 9699-9714.	1.9	32
183	Modeling of aerosol property evolution during winter haze episodes over a megacity cluster in northern China: roles of regional transport and heterogeneous reactions of SO ₂ . Atmospheric Chemistry and Physics, 2019, 19, 9351-9370.	1.9	32
184	High Molecular Diversity of Organic Nitrogen in Urban Snow in North China. Environmental Science & Technology, 2021, 55, 4344-4356.	4.6	32
185	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 2022, 814, 152654.	3.9	32
186	Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China. Atmospheric Chemistry and Physics, 2022, 22, 561-575.	1.9	32
187	Relation between optical and chemical properties of dust aerosol over Beijing, China. Journal of Geophysical Research, 2010, 115, .	3.3	31
188	Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China. Atmospheric Research, 2017, 188, 80-89.	1.8	30
189	Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2513-2526.	1.2	30
190	An improved low-power measurement of ambient NO ₂ and O ₃ combining electrochemical sensor clusters and machine learning. Atmospheric Measurement Techniques, 2019, 12, 1325-1336.	1.2	30
191	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	1.2	30
192	Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China. Atmospheric Research, 2018, 203, 28-35.	1.8	29
193	Effectiveness of short-term air quality emission controls: a high-resolution model study of Beijing during the Asia-Pacific Economic Cooperation (APEC) summit period. Atmospheric Chemistry and Physics, 2019, 19, 8651-8668.	1.9	29
194	Temporal characteristics and vertical distribution of atmospheric ammonia and ammonium in winter in Beijing. Science of the Total Environment, 2019, 681, 226-234.	3.9	29
195	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 6737-6747.	1.9	29
196	Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China – size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmospheric Chemistry and Physics, 2020, 20, 6435-6453.	1.9	29
197	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	3.9	28
198	Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 15569-15581.	1.9	28

#	Article	IF	CITATIONS
199	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	1.2	28
200	Chemical characteristics of size-resolved aerosols in winter in Beijing. Journal of Environmental Sciences, 2014, 26, 1641-1650.	3.2	27
201	Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188, 60-70.	1.1	27
202	Characterization and source apportionment of organic aerosol at 260 m on aÂmeteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3951-3968.	1.9	27
203	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6803-6820.	1.9	27
204	Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol. Atmospheric Measurement Techniques, 2020, 13, 3205-3219.	1.2	27
205	Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019. Atmospheric Chemistry and Physics, 2020, 20, 11527-11550.	1.9	27
206	Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue―Period. Environmental Science & Technology, 2019, 53, 7380-7390.	4.6	26
207	Effects of Regional Transport on Haze in the North China Plain: Transport of Precursors or Secondary Inorganic Aerosols. Geophysical Research Letters, 2020, 47, e2020GL087461.	1.5	26
208	Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method. Atmospheric Chemistry and Physics, 2020, 20, 3645-3661.	1.9	26
209	Local and non-local sources of airborne particulate pollution at Beijing ——The ratio of Mg/Al as an element tracer for estimating the contributions of mineral aerosols from outside Beijing. Science in China Series B: Chemistry, 2005, 48, 253.	0.8	25
210	Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China. Science of the Total Environment, 2018, 633, 1156-1164.	3.9	25
211	A Case Study of Investigating Secondary Organic Aerosol Formation Pathways in Beijing using an Observation-based SOA Box Model. Aerosol and Air Quality Research, 2018, 18, 1606-1616.	0.9	25
212	Cloud scavenging of anthropogenic refractory particles at a mountain site in North China. Atmospheric Chemistry and Physics, 2018, 18, 14681-14693.	1.9	25
213	Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmospheric Environment, 2019, 213, 608-619.	1.9	25
214	Abundance and Diurnal Trends of Fluorescent Bioaerosols in the Troposphere over Mt. Tai, China, in Spring. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4158-4173.	1.2	25
215	Quantitative Determination of Hydroxymethanesulfonate (HMS) Using Ion Chromatography and UHPLC-LTQ-Orbitrap Mass Spectrometry: A Missing Source of Sulfur during Haze Episodes in Beijing. Environmental Science and Technology Letters, 2020, 7, 701-707.	3.9	25
216	Microscopic Evidence for Phase Separation of Organic Species and Inorganic Salts in Fine Ambient Aerosol Particles. Environmental Science & Technology, 2021, 55, 2234-2242.	4.6	25

#	Article	IF	CITATIONS
217	Model bias in simulating major chemical components of PM _{2.5} in China. Atmospheric Chemistry and Physics, 2020, 20, 12265-12284.	1.9	25
218	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmospheric Chemistry and Physics, 2022, 22, 6449-6470.	1.9	25
219	Airborne measurements of gas and particle pollutants during CAREBeijing-2008. Atmospheric Chemistry and Physics, 2014, 14, 301-316.	1.9	24
220	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environmental Science & Technology, 2020, 54, 13409-13418.	4.6	24
221	Measurements of higher alkanes using NO ⁺ chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China. Atmospheric Chemistry and Physics, 2020, 20, 14123-14138.	1.9	24
222	High Abundance of Fluorescent Biological Aerosol Particles in Winter in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 493-502.	1.2	23
223	Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions. Atmospheric Chemistry and Physics, 2020, 20, 2877-2890.	1.9	23
224	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
225	Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmospheric Chemistry and Physics, 2021, 21, 7321-7341.	1.9	23
226	Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and intensive winter campaign 2018. Faraday Discussions, 2021, 226, 207-222.	1.6	23
227	Brown carbon from biomass burning imposes strong circum-Arctic warming. One Earth, 2022, 5, 293-304.	3.6	23
228	Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and Thermodynamic Mixing Behavior. Environmental Science & Technology, 2019, 53, 13009-13018.	4.6	22
229	Molecular markers of biomass burning and primary biological aerosols in urban Beijing: size distribution and seasonal variation. Atmospheric Chemistry and Physics, 2020, 20, 3623-3644.	1.9	22
230	Chemical formation pathways of secondary organic aerosols in the Beijing-Tianjin-Hebei region in wintertime. Atmospheric Environment, 2021, 244, 117996.	1.9	22
231	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	1.9	22
232	New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes. National Science Review, 2017, 4, 804-806.	4.6	21
233	Roles of Sulfur Oxidation Pathways in the Variability in Stable Sulfur Isotopic Composition of Sulfate Aerosols at an Urban Site in Beijing, China. Environmental Science and Technology Letters, 2020, 7, 883-888.	3.9	21
234	Contrasting mixing state of black carbon-containing particles in summer and winter in Beijing. Environmental Pollution, 2020, 263, 114455.	3.7	21

#	Article	IF	CITATIONS
235	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	4.6	21
236	Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018–2019. Atmospheric Environment, 2020, 237, 117662.	1.9	20
237	Light absorption properties and potential sources of brown carbon in Fenwei Plain during winter 2018–2019. Journal of Environmental Sciences, 2021, 102, 53-63.	3.2	20
238	Persistent residential burning-related primary organic particles during wintertime hazes in North China: insights into their aging and optical changes. Atmospheric Chemistry and Physics, 2021, 21, 2251-2265.	1.9	20
239	Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 737-752.	1.9	19
240	Aerosol chemistry and particle growth events at an urban downwind site in North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 14637-14651.	1.9	19
241	IAP-AACM v1.0: a global to regional evaluation of the atmospheric chemistry model in CAS-ESM. Atmospheric Chemistry and Physics, 2019, 19, 8269-8296.	1.9	19
242	The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. Environmental Pollution, 2020, 263, 114507.	3.7	19
243	Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS. Atmospheric Chemistry and Physics, 2020, 20, 14091-14102.	1.9	19
244	Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices. Atmospheric Environment, 2018, 179, 107-117.	1.9	18
245	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of the Total Environment, 2020, 703, 134475.	3.9	18
246	Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. Science of the Total Environment, 2021, 758, 143970.	3.9	18
247	Key Role of NO ₃ Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. Environmental Science & Technology, 2021, 55, 842-853.	4.6	18
248	Unexpected Increases of Severe Haze Pollution During the Post COVIDâ€19 Period: Effects of Emissions, Meteorology, and Secondary Production. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	18
249	Recent analytical tools to mitigate carbon-based pollution: New insights by using wavelet coherence for a sustainable environment. Environmental Research, 2022, 212, 113074.	3.7	18
250	The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM2.5 in Beijing during the 2014 APEC summit. Environmental Pollution, 2018, 243, 919-928.	3.7	17
251	Significantly Enhanced Aerosol CCN Activity and Number Concentrations by Nucleationâ€Initiated Haze Events: A Case Study in Urban Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14102-14113.	1.2	17
252	Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and <i>α</i> -dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmospheric Chemistry and Physics, 2020, 20, 6841-6860.	1.9	17

#	Article	IF	CITATIONS
253	Regional Impact of Biomass Burning in Southeast Asia on Atmospheric Aerosols during the 2013 Seven South-East Asian Studies Project. Aerosol and Air Quality Research, 2017, 17, 2924-2941.	0.9	17
254	Vertical Characterization of Aerosol Particle Composition in Beijing, China: Insights From 3â€Month Measurements With Two Aerosol Mass Spectrometers. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,016.	1.2	16
255	Nocturnal Low-level Winds and Their Impacts on Particulate Matter over the Beijing Area. Advances in Atmospheric Sciences, 2018, 35, 1455-1468.	1.9	16
256	A Black Carbonâ€Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements. Geophysical Research Letters, 2019, 46, 8474-8483.	1.5	16
257	Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmospheric Chemistry and Physics, 2020, 20, 7291-7306.	1.9	16
258	Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere, 2020, 258, 127310.	4.2	16
259	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	4.6	16
260	Vertical Distributions of Primary and Secondary Aerosols in Urban Boundary Layer: Insights into Sources, Chemistry, and Interaction with Meteorology. Environmental Science & Technology, 2021, 55, 4542-4552.	4.6	16
261	Clobal–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmospheric Chemistry and Physics, 2021, 21, 9343-9366.	1.9	16
262	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	1.2	16
263	Evaluation of a New Aerosol Chemical Speciation Monitor (ACSM) System at an Urban Site in Atlanta, GA: The Use of Capture Vaporizer and PM _{2.5} Inlet. ACS Earth and Space Chemistry, 2021, 5, 2565-2576.	1.2	16
264	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	1.9	15
265	Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Science of the Total Environment, 2017, 578, 307-316.	3.9	14
266	Molecular characterization of size-segregated organic aerosols in the urban boundary layer in wintertime Beijing by FT-ICR MS. Faraday Discussions, 2021, 226, 457-478.	1.6	14
267	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. Atmospheric Chemistry and Physics, 2021, 21, 11453-11465.	1.9	14
268	Vertical distribution of particle-phase dicarboxylic acids, oxoacids and <i>α</i> -dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 10331-10350.	1.9	14
269	Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar. Journal of Meteorological Research, 2017, 31, 350-362.	0.9	13
270	Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018. Atmospheric Chemistry and Physics, 2019, 19, 14791-14804.	1.9	13

#	Article	IF	CITATIONS
271	Transport Patterns, Size Distributions, and Depolarization Characteristics of Dust Particles in East Asia in Spring 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031752.	1.2	13
272	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	1.6	13
273	Hygroscopicity of Organic Aerosols Linked to Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2020GL091683.	1.5	13
274	Realâ€ŧime characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office. Indoor Air, 2021, 31, 1364-1376.	2.0	13
275	Distinct Ultrafine―and Accumulationâ€Mode Particle Properties in Clean and Polluted Urban Environments. Geophysical Research Letters, 2019, 46, 10918-10925.	1.5	12
276	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. Environmental Research Letters, 2020, 15, 074007.	2.2	12
277	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	1.6	12
278	Source apportionment of PM2.5 in the most polluted Central Plains Economic Region in China: Implications for joint prevention and control of atmospheric pollution. Journal of Cleaner Production, 2021, 283, 124557.	4.6	12
279	Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain. Atmospheric Measurement Techniques, 2021, 14, 3693-3705.	1.2	12
280	Gravity-Current Driven Transport of Haze from North China Plain to Northeast China in Winter 2010-Part I: Observations. Scientific Online Letters on the Atmosphere, 2012, 8, 13-16.	0.6	12
281	Nitrate and secondary organic aerosol dominated particle light extinction in Beijing due to clean air action. Atmospheric Environment, 2022, 269, 118833.	1.9	12
282	Mixing state of refractory black carbon in fog and haze at rural sites in winter on the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 17631-17648.	1.9	12
283	Secondary aerosol formation alters CCN activity in the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 7409-7427.	1.9	11
284	Secondary organic aerosol formation and source contributions over east China in summertime. Environmental Pollution, 2022, 306, 119383.	3.7	11
285	Detailed Measurements of Submicron Particles from an Independence Day Fireworks Event in Albany, New York Using HR-ToF-AMS. ACS Earth and Space Chemistry, 2019, 3, 1451-1459.	1.2	10
286	Water-soluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong. Science of the Total Environment, 2019, 697, 134095.	3.9	10
287	Chemical formation and source apportionment of PM2.5 at an urban site at the southern foot of the Taihang mountains. Journal of Environmental Sciences, 2021, 103, 20-32.	3.2	10
288	Synergistic effect of reductions in multiple gaseous precursors on secondary inorganic aerosols in winter under a meteorology-based redistributed daily NH3 emission inventory within the Beijing-Tianjin-Hebei region, China. Science of the Total Environment, 2022, 821, 153383.	3.9	10

#	Article	IF	CITATIONS
289	Secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor during wintertime in Beijing, China. Environmental Research, 2022, 209, 112751.	3.7	10
290	The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement. Atmospheric Chemistry and Physics, 2022, 22, 7619-7630.	1.9	10
291	Characterizing Urban Turbulence Under Haze Pollution: Insights into Temperature–Humidity Dissimilarity. Boundary-Layer Meteorology, 2016, 158, 501-510.	1.2	9
292	Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain. Science of the Total Environment, 2020, 719, 137473.	3.9	9
293	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	1.6	9
294	Spatial and temporal variations of CO ₂ mole fractions observed at Beijing, Xianghe, and Xinglong in North China. Atmospheric Chemistry and Physics, 2021, 21, 11741-11757.	1.9	9
295	Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer. Atmospheric Chemistry and Physics, 2021, 21, 12949-12963.	1.9	9
296	Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere, 2020, 255, 126850.	4.2	9
297	Quantitative attribution of wintertime haze in coastal east China to local emission and regional intrusion under a stagnant internal boundary layer. Atmospheric Environment, 2022, 276, 119006.	1.9	9
298	The Levels and Sources of Nitrous Acid (HONO) in Winter of Beijing and Sanmenxia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
299	Exploring Possible Missing Sinks of Nitrate and Its Precursors in Current Air Quality Models —A Case Simulation in the Pearl River Delta, China, Using an Observation-Based Box Model. Scientific Online Letters on the Atmosphere, 2015, 11, 124-128.	0.6	8
300	Assessment of dicarbonyl contributions to secondary organic aerosols over China using RAMS-CMAQ. Atmospheric Chemistry and Physics, 2019, 19, 6481-6495.	1.9	8
301	Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China. Science of the Total Environment, 2020, 739, 139791.	3.9	8
302	Size-resolved characterization of organic aerosol in the North China Plain: new insights from high resolution spectral analysis. Environmental Science Atmospheres, 2021, 1, 346-358.	0.9	8
303	Emergency Response Measures to Alleviate a Severe Haze Pollution Event in Northern China during December 2015: Assessment of Effectiveness. Aerosol and Air Quality Research, 2020, 20, 2098-2116.	0.9	8
304	Investigation of sources and formation mechanisms of fine particles and organic aerosols in cold season in Fenhe Plain, China. Atmospheric Research, 2022, 268, 106018.	1.8	8
305	Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing. Atmospheric Chemistry and Physics, 2022, 22, 1251-1269.	1.9	8
306	Rapid transition of aerosol optical properties and water-soluble organic aerosols in cold season in Fenwei Plain. Science of the Total Environment, 2022, 829, 154661.	3.9	8

#	Article	IF	CITATIONS
307	Uplifting of Asian Continental Pollution Plumes from the Boundary Layer to the Free Atmosphere over the Northwestern Pacific Rim in Spring. Scientific Online Letters on the Atmosphere, 2013, 9, 40-44.	0.6	7
308	Observation of nocturnal low-level wind shear and particulate matter in urban Beijing using a Doppler wind lidar. Atmospheric and Oceanic Science Letters, 2017, 10, 411-417.	0.5	7
309	Vertical profiles of particle light extinction coefficient in the lower troposphere in Shanghai in winter based on tethered airship measurements. Chemosphere, 2020, 238, 124634.	4.2	7
310	Evolution of Aerosol Under Moist and Fog Conditions in a Rural Forest Environment: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Geophysical Research Letters, 2020, 47, e2020GL089714.	1.5	7
311	Aerosol characterization in a city in central China plain and implications for emission control. Journal of Environmental Sciences, 2021, 104, 242-252.	3.2	7
312	The importance of hydroxymethanesulfonate (HMS) in winter haze episodes in North China Plain. Environmental Research, 2022, 211, 113093.	3.7	7
313	Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 2022, 212, 113557.	3.7	7
314	Chemical characterization of submicron particles during typical air pollution episodes in spring over Beijing. Atmospheric and Oceanic Science Letters, 2016, 9, 255-262.	0.5	6
315	Size Distribution and Depolarization Properties of Aerosol Particles over the Northwest Pacific and Arctic Ocean from Shipborne Measurements during an R/V <i>Xuelong</i> Cruise. Environmental Science & amp; Technology, 2019, 53, 7984-7995.	4.6	6
316	Effect of vertical parameterization of a missing daytime source of HONO on concentrations of HONO, O3 and secondary organic aerosols in eastern China. Atmospheric Environment, 2020, 226, 117208.	1.9	6
317	Transport Patterns and Potential Sources of Atmospheric Pollution during the XXIV Olympic Winter Games Period. Advances in Atmospheric Sciences, 2022, 39, 1608-1622.	1.9	6
318	Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.	3.9	6
319	Biological and Nonbiological Sources of Fluorescent Aerosol Particles in the Urban Atmosphere. Environmental Science & Technology, 2022, 56, 7588-7597.	4.6	6
320	Vertically Resolved Aerosol Chemistry in the Low Boundary Layer of Beijing in Summer. Environmental Science & Technology, 2022, 56, 9312-9324.	4.6	6
321	Compound-Specific Stable Carbon Isotope Ratios of Terrestrial Biomarkers in Urban Aerosols from Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 1896-1904.	1.2	5
322	Investigating three patterns of new particles growing to the size of cloud condensation nuclei in Beijing's urban atmosphere. Atmospheric Chemistry and Physics, 2021, 21, 183-200.	1.9	5
323	Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere. Atmospheric Chemistry and Physics, 2021, 21, 14293-14308.	1.9	5
324	Measurement report: On the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 4599-4613.	1.9	5

#	Article	IF	CITATIONS
325	Does Ambient Secondary Conversion or the Prolonged Fast Conversion in Combustion Plumes Cause Severe PM2.5 Air Pollution in China?. Atmosphere, 2022, 13, 673.	1.0	5
326	Characteristics and source apportionment of black carbon aerosol in the North China Plain. Atmospheric Research, 2022, 276, 106246.	1.8	5
327	Characteristics and sources of 2002 super dust storm in Beijing. Science Bulletin, 2004, 49, 698.	1.7	4
328	Quantification of different processes in the rapid formation of a regional haze episode in north China using an integrated analysis tool coupling source apportionment with process analysis. Atmospheric Pollution Research, 2021, 12, 159-172.	1.8	4
329	A Large Impact of Cooking Organic Aerosol (COA) on Particle Hygroscopicity and CCN Activity in Urban Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033628.	1.2	4
330	Mixing characteristics of black carbon aerosols in a coastal city using the CPMA-SP2 system. Atmospheric Research, 2022, 265, 105867.	1.8	4
331	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	3.9	4
332	å⊷ä°¬æŒç»é›¾éœ¾å®æ°"ä,亚微米细颗粒物化å¦ç»"å^†åŠå…‰å¦æ€§è [≁] . Chinese Science Bull	eti o, 2014	, 59, 1955-19
333	Gravity-Current-Driven Transport of Haze from the North China Plain to Northeast China in Winter 2010-Part 2: Model Simulation with Tagged Tracers. Scientific Online Letters on the Atmosphere, 2013, 9, 60-64.	0.6	4
334	Analysis of Chemical Composition, Source and Processing Characteristics of Submicron Aerosol during the Summer in Beijing, China. Aerosol and Air Quality Research, 2019, 19, 1450-1462.	0.9	4
335	Dynamic variations of ammonia in various life spaces and seasons and the influences of human activities. Building and Environment, 2022, 212, 108820.	3.0	4
336	Particle number size distribution of PM1 and PM10 in fogs and implications on fog droplet evolutions. Atmospheric Environment, 2022, 277, 119086.	1.9	4
337	An integrated air quality modeling system coupling regional-urban and street models in Beijing. Urban Climate, 2022, 43, 101143.	2.4	4
338	Submicron-scale aerosol above the city canopy in Beijing in spring based on in-situ meteorological tower measurements. Atmospheric Research, 2022, 271, 106128.	1.8	4
339	Machine learning elucidates the impact of short-term emission changes on air pollution in Beijing. Atmospheric Environment, 2022, 283, 119192.	1.9	4
340	High fraction of soluble trace metals in fine particles under heavy haze in central China. Science of the Total Environment, 2022, 841, 156771.	3.9	4
341	Measurement of particle sulfate from micro-aethalometer filters. Atmospheric Environment, 2014, 95, 520-524.	1.9	3

342Averaging period effects on the turbulent flux and transport efficiency during haze pollution in
Beijing, China. Meteorology and Atmospheric Physics, 2015, 127, 419-433.0.93

#	Article	IF	CITATIONS
343	Using a coupled LES aerosol–radiation model to investigate the importance of aerosol–boundary layer feedback in a Beijing haze episode. Faraday Discussions, 2021, 226, 173-190.	1.6	3
344	Cross-boundary transport and source apportionment for PM2.5 in a typical industrial city in the Hebei Province, China: A modeling study. Journal of Environmental Sciences, 2022, 115, 465-473.	3.2	3
345	Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China. Environmental Pollution, 2021, 291, 118114.	3.7	3
346	Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China. Environmental Pollution, 2022, 294, 118578.	3.7	3
347	Primary Emissions and Secondary Aerosol Processing During Wintertime in Rural Area of North China Plain. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
348	Tracer-based characterization of fine carbonaceous aerosol in Beijing during a strict emission control period. Science of the Total Environment, 2022, 841, 156638.	3.9	3
349	Contrasting aerosol growth potential in the northern and central-southern regions of the North China Plain: Implications for combating regional pollution. Atmospheric Environment, 2021, , 118723.	1.9	2
350	High crop yield losses induced by potential HONO sources — A modelling study in the North China Plain. Science of the Total Environment, 2022, 803, 149929.	3.9	2
351	Real-time online measurements of the inorganic and organic composition of haze fine particles with an Aerosol Chemical Speciation Monitor (ACSM). Chinese Science Bulletin, 2013, 58, 3818-3828.	0.4	2
352	Investigating the importance of sub-grid particle formation in point source plumes over eastern China using IAP-AACM v1.0 with a sub-grid parameterization. Geoscientific Model Development, 2021, 14, 4411-4428.	1.3	1
353	Impact of sub-grid particle formation in sulfur-rich plumes on particle mass and number concentrations over China. Atmospheric Environment, 2022, 268, 118711.	1.9	1
354	Dwindling aromatic compounds in fine aerosols from chunk coal to honeycomb briquette combustion. Science of the Total Environment, 2022, 838, 155971.	3.9	1
355	Three-dimensional Thermal and Dynamic Structure in Synoptic and Local Scale and its Influence on Haze Formation during Autumn in Beijing. Aerosol and Air Quality Research, 2021, 21, 200593.	0.9	0