Charles R Tyler

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8307795/charles-r-tyler-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 196 15,778 122 h-index g-index citations papers 6.65 6.7 17,398 205 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
196	Estrogens regulate early embryonic development of the olfactory sensory system via estrogen-responsive glia <i>Development (Cambridge)</i> , 2022 , 149,	6.6	1
195	Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects <i>Ecotoxicology</i> , 2022 , 31, 425	2.9	0
194	Harmful Algal Blooms and their impacts on shellfish mariculture follow regionally distinct patterns of water circulation in the western English Channel during the 2018 heatwave <i>Harmful Algae</i> , 2022 , 111, 102166	5.3	1
193	Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development <i>Frontiers in Pharmacology</i> , 2022 , 13, 718072	5.6	
192	Are synthetic glucocorticoids in the aquatic environment a risk to fish?. <i>Environment International</i> , 2022 , 162, 107163	12.9	1
191	How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. <i>Journal of Invertebrate Pathology</i> , 2021 , 186, 107369	2.6	12
190	Impacts of land use on water quality and the viability of bivalve shellfish mariculture in the UK: A case study and review for SW England. <i>Environmental Science and Policy</i> , 2021 , 126, 122-131	6.2	4
189	Characterization of G protein-coupled estrogen receptors in Japanese medaka, Oryzias latipes. Journal of Applied Toxicology, 2021 , 41, 1390-1399	4.1	
188	Effects of maternal exposure to environmentally relevant concentrations of 17\textbf{\textit{E}}\text{thinyloestradiol} in a live bearing freshwater fish, Xenotoca eiseni (Cyprinodontiformes, Goodeidae). <i>Aquatic Toxicology</i> , 2021 , 232, 105746	5.1	
187	Global variation in freshwater physico-chemistry and its influence on chemical toxicity in aquatic wildlife. <i>Biological Reviews</i> , 2021 , 96, 1528-1546	13.5	4
186	Functional brain imaging in larval zebrafish for characterising the effects of seizurogenic compounds acting via a range of pharmacological mechanisms. <i>British Journal of Pharmacology</i> , 2021 , 178, 2671-2689	8.6	8
185	Probiotics and competitive exclusion of pathogens in shrimp aquaculture. <i>Reviews in Aquaculture</i> , 2021 , 13, 324-352	8.9	33
184	Neutrophil activation by nanomaterials: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. <i>Nanotoxicology</i> , 2021 , 15, 1-20	5.3	7
183	Production without medicalisation: Risk practices and disease in Bangladesh aquaculture. <i>Geographical Journal</i> , 2021 , 187, 39-50	2.2	3
182	Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus). <i>Environmental Science and Pollution Research</i> , 2021 , 28, 26055-26063	5.1	12
181	Seasonal variation in oestrogenic potency and biological effects of wastewater treatment works effluents assessed using ERE-GFP transgenic zebrafish embryo-larvae. <i>Aquatic Toxicology</i> , 2021 , 237, 105864	5.1	2
180	Stakeholder perspectives on the importance of water quality and other constraints for sustainable mariculture. <i>Environmental Science and Policy</i> , 2020 , 114, 506-518	6.2	4

(2019-2020)

179	Expression dynamics of genes in the hypothalamic-pituitary-thyroid (HPT) cascade and their responses to 3,3\$5-triiodo-l-thyronine (T3) highlights potential vulnerability to thyroid-disrupting chemicals in zebrafish (Danio rerio) embryo-larvae. <i>Aquatic Toxicology</i> , 2020 , 225, 105547	5.1	6
178	Environment and food web structure interact to alter the trophic magnification of persistent chemicals across river ecosystems. <i>Science of the Total Environment</i> , 2020 , 717, 137271	10.2	6
177	A laboratory investigation into features of morphology and physiology for their potential to predict reproductive success in male frogs. <i>PLoS ONE</i> , 2020 , 15, e0241625	3.7	1
176	Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach () Living in English Rivers. <i>Environmental Science & Environmental Science & Environm</i>	3 5 -939	4 5
175	Development and Application of a Microplate Assay for Toxicity Testing on Aquatic Cyanobacteria. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 705-720	3.8	1
174	Geographic Range and Natural Distribution 2020 , 41-56		1
173	Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 2020, 12, 966-	98.6	55
172	A newly developed genetic sex marker and its application to understanding chemically induced feminisation in roach (Rutilus rutilus). <i>Molecular Ecology Resources</i> , 2020 , 20, 1007-1022	8.4	2
171	Biological Traits and the Transfer of Persistent Organic Pollutants through River Food Webs. <i>Environmental Science & Environmental Science & Environm</i>	10.3	10
170	The Pathobiome in Animal and Plant Diseases. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 996-1008	10.9	90
169	Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment. <i>Science of the Total Environment</i> , 2019 , 695, 133804	10.2	9
168	A catchment-scale perspective of plastic pollution. <i>Global Change Biology</i> , 2019 , 25, 1207	11.4	144
167	Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2019 , 209, 99-112	5.1	27
166	A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 8459-8467	5.1	39
165	Pharmacology beyond the patient - The environmental risks of human drugs. <i>Environment International</i> , 2019 , 129, 320-332	12.9	48
164	The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm. <i>Nanotoxicology</i> , 2019 , 13, 894-908	5.3	8
163	A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20182416	4.4	17
162	Evolution of non-kin cooperation: social assortment by cooperative phenotype in guppies. <i>Royal Society Open Science</i> , 2019 , 6, 181493	3.3	13

161	Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 2019, 646, 68-7	7410.2	167
160	Persistent contaminants as potential constraints on the recovery of urban river food webs from gross pollution. <i>Water Research</i> , 2019 , 163, 114858	12.5	21
159	New insights into organ-specific oxidative stress mechanisms using a novel biosensor zebrafish. <i>Environment International</i> , 2019 , 133, 105138	12.9	12
158	Ontogeny and Dynamics of the Gonadal Development, Embryogenesis, and Gestation in Xenotoca eiseni (Cyprinodontiformes, Goodeidae). <i>Sexual Development</i> , 2019 , 13, 297-310	1.6	2
157	Raising awareness of antimicrobial resistance in rural aquaculture practice in Bangladesh through digital communications: a pilot study. <i>Global Health Action</i> , 2019 , 12, 1734735	3	7
156	Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. <i>Journal of Fish Biology</i> , 2019 , 94, 86-95	1.9	11
155	Capturing ecology in modeling approaches applied to environmental risk assessment of endocrine active chemicals in fish. <i>Critical Reviews in Toxicology</i> , 2018 , 48, 109-120	5.7	4
154	Effects of neonicotinoid exposure on molecular and physiological indicators of honey bee immunocompetence. <i>Apidologie</i> , 2018 , 49, 196-208	2.3	7
153	Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish. <i>Environmental Science & Environmental</i> 2,6656-6665	10.3	28
152	Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. Journal of Steroid Biochemistry and Molecular Biology, 2018 , 184, 38-46	5.1	32
151	Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. <i>Critical Reviews in Toxicology</i> , 2018 , 48, 252-271	5.7	27
150	Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent. <i>Science of the Total Environment</i> , 2018 , 621, 782-790	10.2	32
149	Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. <i>Biological Reviews</i> , 2018 , 93, 626-641	13.5	63
148	Fipronil pesticide as a suspect in historical mass mortalities of honey bees. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 13033-13038	11.5	38
147	Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback. <i>Ecological Modelling</i> , 2018 , 387, 107-117	3	6
146	ECOdrug: a database connecting drugs and conservation of their targets across species. <i>Nucleic Acids Research</i> , 2018 , 46, D930-D936	20.1	36
145	Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history. <i>Aquatic Toxicology</i> , 2017 , 184, 26-36	5.1	11
144	Bioavailability and Kidney Responses to Diclofenac in the Fathead Minnow (Pimephales promelas). <i>Environmental Science & amp; Technology</i> , 2017 , 51, 1764-1774	10.3	30

(2015-2017)

143	Development of a common carp (Cyprinus carpio) pregnane X receptor (cPXR) transactivation reporter assay and its activation by azole fungicides and pharmaceutical chemicals. <i>Toxicology in Vitro</i> , 2017 , 41, 114-122	3.6	11
142	The Evolution of Cooperation: Interacting Phenotypes among Social Partners. <i>American Naturalist</i> , 2017 , 189, 630-643	3.7	17
141	Adaptive capabilities and fitness consequences associated with pollution exposure in fish. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2017 , 372,	5.8	48
140	Disruption of the Prostaglandin Metabolome and Characterization of the Pharmaceutical Exposome in Fish Exposed to Wastewater Treatment Works Effluent As Revealed by Nanoflow-Nanospray Mass Spectrometry-Based Metabolomics. <i>Environmental Science & Environmental Science &</i>	10.3	38
139	Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. <i>Environment International</i> , 2017 , 109, 155-169	12.9	107
138	Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. <i>Environmental Science & Description (Science & Descriptio</i>	10.3	223
137	Ecotoxicological assessment of nanoparticle-containing acrylic copolymer dispersions in fairy shrimp and zebrafish embryos. <i>Environmental Science: Nano</i> , 2017 , 4, 1981-1997	7.1	13
136	4-dimensional functional profiling in the convulsant-treated larval zebrafish brain. <i>Scientific Reports</i> , 2017 , 7, 6581	4.9	22
135	Establishment of estrogen receptor 1 (ESR1)-knockout medaka: ESR1 is dispensable for sexual development and reproduction in medaka, Oryzias latipes. <i>Development Growth and Differentiation</i> , 2017 , 59, 552-561	3	21
134	Shipbuilding Docks as Experimental Systems for Realistic Assessments of Anthropogenic Stressors on Marine Organisms. <i>BioScience</i> , 2017 , 67, 853-859	5.7	1
133	Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2016 , 158, 189-197	5.1	15
132	Sensory systems and ionocytes are targets for silver nanoparticle effects in fish. <i>Nanotoxicology</i> , 2016 , 10, 1276-86	5.3	21
131	Population-level consequences for wild fish exposed to sublethal concentrations of chemicals Dacritical review. <i>Fish and Fisheries</i> , 2016 , 17, 545-566	6	92
130	Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. <i>Nanotoxicology</i> , 2016 , 10, 480-7	5.3	23
129	A tiered assessment strategy for more effective evaluation of bioaccumulation of chemicals in fish. <i>Regulatory Toxicology and Pharmacology</i> , 2016 , 75, 20-6	3.4	15
128	Interactive effects of pesticide exposure and pathogen infection on bee health (a critical analysis). <i>Biological Reviews</i> , 2016 , 91, 1006-1019	13.5	49
127	High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish. <i>Environmental Science & Estrogenic Rechnology</i> , 2016 , 50, 6536-45	10.3	15
126	Effects of the lipid regulating drug clofibric acid on PPARFegulated gene transcript levels in common carp (Cyprinus carpio) at pharmacological and environmental exposure levels. <i>Aquatic Toxicology</i> , 2015 , 161, 127-37	5.1	30

125	Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens. <i>Environmental Science & Environmental & Environ</i>	10.3	43
124	Tracing engineered nanomaterials in biological tissues using coherent anti-Stokes Raman scattering (CARS) microscopy - A critical review. <i>Nanotoxicology</i> , 2015 , 9, 928-39	5.3	18
123	Climate change and pollution speed declines in zebrafish populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E1237-46	11.5	59
122	Effects of Exposure to WwTW Effluents over Two Generations on Sexual Development and Breeding in Roach Rutilus rutilus. <i>Environmental Science & Environmental Science & Envir</i>	10.3	9
121	Transgenic fish systems and their application in ecotoxicology. <i>Critical Reviews in Toxicology</i> , 2015 , 45, 124-41	5.7	32
120	Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?. <i>Biological Reviews</i> , 2015 , 90, 1100-17	13.5	68
119	Do stressful conditions make adaptation difficult? Guppies in the oil-polluted environments of southern Trinidad. <i>Evolutionary Applications</i> , 2015 , 8, 854-70	4.8	30
118	Environmental chemicals active as human antiandrogens do not activate a stickleback androgen receptor but enhance a feminising effect of oestrogen in roach. <i>Aquatic Toxicology</i> , 2015 , 168, 48-59	5.1	20
117	Characterization of Oryzias latipes glucocorticoid receptors and their unique response to progestins. <i>Journal of Applied Toxicology</i> , 2015 , 35, 302-9	4.1	13
116	Ecotoxicology of Nanomaterials in Aquatic Systems. Frontiers of Nanoscience, 2015, 8, 3-45	0.7	5
115	Apparent underdiagnosis of Cerebrotendinous Xanthomatosis revealed by analysis of ~60,000 human exomes. <i>Molecular Genetics and Metabolism</i> , 2015 , 116, 298-304	3.7	56
114	Uptake and retention of microplastics by the shore crab Carcinus maenas. <i>Environmental Science & Environmental & Envi</i>	10.3	404
113	A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. <i>Journal of Chromatography A</i> , 2014 , 1365, 72-85	4.5	58
112	Differing species responsiveness of estrogenic contaminants in fish is conferred by the ligand binding domain of the estrogen receptor. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	70
111	Bioavailability of the imidazole antifungal agent clotrimazole and its effects on key biotransformation genes in the common carp (Cyprinus carpio). <i>Aquatic Toxicology</i> , 2014 , 152, 57-65	5.1	30
110	Developmental impairment in eurasian dipper nestlings exposed to urban stream pollutants. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1315-23	3.8	23
109	Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model. <i>Ecological Modelling</i> , 2014 , 280, 76-88	3	31
108	Effects of intracerebroventricular administered fluoxetine on cardio-ventilatory functions in rainbow trout (Oncorhynchus mykiss). <i>General and Comparative Endocrinology</i> , 2014 , 205, 176-84	3	8

107	The vas::egfp transgenic zebrafish: a practical model for studies on the molecular mechanisms by which environmental estrogens affect gonadal sex differentiation. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 602-5	3.8	9
106	Populations of a cyprinid fish are self-sustaining despite widespread feminization of males. <i>BMC Biology</i> , 2014 , 12, 1	7.3	100
105	Cloning, expression and functional characterization of carp, Cyprinus carpio, estrogen receptors and their differential activations by estrogens. <i>Journal of Applied Toxicology</i> , 2013 , 33, 41-9	4.1	20
104	Eurasian dipper eggs indicate elevated organohalogenated contaminants in urban rivers. <i>Environmental Science & Environmental </i>	10.3	12
103	Effects of particle size and coating on nanoscale Ag and TiOlexposure in zebrafish (Danio rerio) embryos. <i>Nanotoxicology</i> , 2013 , 7, 1315-24	5.3	90
102	Impact of environmental estrogens on Yfish considering the diversity of estrogen signaling. <i>General and Comparative Endocrinology</i> , 2013 , 191, 190-201	3	50
101	Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. <i>Environmental Science & Environmental </i>	10.3	164
100	Development of methods to detect occurrence and effects of endocrine-disrupting chemicals: fueling a fundamental shift in regulatory ecotoxicology. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2661-2	3.8	4
99	Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 144-54	3.8	131
98	The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. <i>Environmental Science & Environmental & En</i>	10.3	50
97	Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. <i>Environmental Science & Environmental Science & Environm</i>	10.3	29
96	Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). <i>Zoology</i> , 2012 , 115, 365-71	1.7	100
95	Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. <i>Environmental Science & Environmental Scienc</i>	10.3	63
94	Comparative breeding and behavioral responses to ethinylestradiol exposure in wild and laboratory maintained zebrafish (Danio rerio) populations. <i>Environmental Science & Environmental Science & Env</i>	77-83	30
93	Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. <i>Environmental Science & Environmental & Environme</i>	10.3	61
92	Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. <i>Aquatic Toxicology</i> , 2012 , 109, 250-8	5.1	78
91	Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos. <i>BMC Biotechnology</i> , 2012 , 12, 32	3.5	21
90	Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. <i>Environmental Science & Environmental & Envi</i>	10.3	48

89	Endocrine disrupting chemicals and sexual behaviors in fisha critical review on effects and possible consequences. <i>Critical Reviews in Toxicology</i> , 2012 , 42, 653-68	5.7	174
88	Density-dependent processes in the life history of fishes: evidence from laboratory populations of zebrafish Danio rerio. <i>PLoS ONE</i> , 2012 , 7, e37550	3.7	39
87	Characterization of cerium oxide nanoparticles-part 1: size measurements. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 983-93	3.8	59
86	Characterization of cerium oxide nanoparticles-part 2: nonsize measurements. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 994-1003	3.8	49
85	Biosensor zebrafish provide new insights into potential health effects of environmental estrogens. <i>Environmental Health Perspectives</i> , 2012 , 120, 990-6	8.4	51
84	Are toxicological responses in laboratory (inbred) zebrafish representative of those in outbred (wild) populations? - A case study with an endocrine disrupting chemical. <i>Environmental Science & Environmental Science</i>	10.3	37
83	Silver nanoparticles: behaviour and effects in the aquatic environment. <i>Environment International</i> , 2011 , 37, 517-31	12.9	909
82	Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1227-35		104
81	Implications of persistent exposure to treated wastewater effluent for breeding in wild roach (Rutilus rutilus) populations. <i>Environmental Science & Environmental Science & </i>	10.3	71
80	Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): implications for biomonitoring. <i>Environmental Science & Environmental Science </i>	10.3	61
79	Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents. <i>Environmental Science & Environmental & Environme</i>	10.3	98
78	The consequences of feminization in breeding groups of wild fish. <i>Environmental Health Perspectives</i> , 2011 , 119, 306-11	8.4	170
77	Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). <i>Environmental Science & Description (Content of the North of the North Office of the North Office of the North Office (Content of the North Office o</i>	10.3	232
76	Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. <i>Toxicological Sciences</i> , 2010 , 115, 521-34	4.4	265
75	Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. <i>Zebrafish</i> , 2010 , 7, 109-17	2	133
74	Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish. <i>Environmental Science & Environmental Science</i>	10.3	223
73	Physiological and health consequences of social status in zebrafish (Danio rerio). <i>Physiology and Behavior</i> , 2010 , 101, 576-87	3.5	86
72	Impacts of early life exposure to estrogen on subsequent breeding behavior and reproductive success in zebrafish. <i>Environmental Science & Emp; Technology</i> , 2010 , 44, 6481-7	10.3	44

(2008-2010)

71	Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish. <i>Environmental Science & Environmental S</i>	10.3	38
70	Profiles and some initial identifications of (anti)androgenic compounds in fish exposed to wastewater treatment works effluents. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 1137-43	10.3	56
69	Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model. <i>Environmental Science & Environmental Scienc</i>	10.3	135
68	Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. <i>Aquatic Toxicology</i> , 2010 , 97, 174-87	5.1	66
67	Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. <i>Critical Reviews in Toxicology</i> , 2010 , 40, 287-304	5.7	403
66	Gas-liquid chromatography-tandem mass spectrometry methodology for the quantitation of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents and from wild populations. <i>Journal of Chromatography A</i> , 2010 , 1217, 112-8	4.5	47
65	Statistical modeling suggests that antiandrogens in effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers. <i>Environmental Health Perspectives</i> , 2009 , 117, 797-802	8.4	147
64	High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. <i>Toxicological Sciences</i> , 2009 , 109, 372-80	4.4	85
63	Growth rate during early life affects sexual differentiation in roach (Rutilus rutilus). <i>Environmental Biology of Fishes</i> , 2009 , 85, 277-284	1.6	10
62	The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus. <i>Ecotoxicology</i> , 2009 , 18, 122-33	2.9	36
61	Environmental health impacts of equine estrogens derived from hormone replacement therapy. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	44
60	Hepatic transcriptomic and metabolomic responses in the stickleback (Gasterosteus aculeatus) exposed to environmentally relevant concentrations of dibenzanthracene. <i>Environmental Science & Environmental Science</i>	10.3	67
59	Parentage outcomes in response to estrogen exposure are modified by social grouping in zebrafish. <i>Environmental Science & Environmental Science & Env</i>	10.3	15
58	Estrogenic wastewater treatment works effluents reduce egg production in fish. <i>Environmental Science & Eamp; Technology</i> , 2009 , 43, 2976-82	10.3	67
57	Sexual reprogramming and estrogenic sensitization in wild fish exposed to ethinylestradiol. <i>Environmental Science & Environmental Science & Environme</i>	10.3	105
56	Fish toxicogenomics. Advances in Experimental Biology, 2008, 2, 75-325		9
55	An environmental estrogen alters reproductive hierarchies, disrupting sexual selection in group-spawning fish. <i>Environmental Science & Environmental </i>	10.3	88
54	Variability in measures of reproductive success in laboratory-kept colonies of zebrafish and implications for studies addressing population-level effects of environmental chemicals. <i>Aquatic Toxicology</i> 2008 87, 115-26	5.1	61

53	A practicable laboratory flow-through exposure system for assessing the health effects of effluents in fish. <i>Aquatic Toxicology</i> , 2008 , 88, 164-72	5.1	13
52	Imaging metal oxide nanoparticles in biological structures with CARS microscopy. <i>Optics Express</i> , 2008 , 16, 3408-19	3.3	80
51	Roach, Sex, and Gender-Bending Chemicals: The Feminization of Wild Fish in English Rivers. <i>BioScience</i> , 2008 , 58, 1051-1059	5.7	89
50	Altered sexual development in roach (Rutilus rutilus) exposed to environmental concentrations of the pharmaceutical 17alpha-ethinylestradiol and associated expression dynamics of aromatases and estrogen receptors. <i>Toxicological Sciences</i> , 2008 , 106, 113-23	4.4	73
49	Investigation of nitrification and nitrogen removal from centrate in a submerged attached-growth bioreactor. <i>Water Environment Research</i> , 2008 , 80, 222-8	2.8	7
48	Manufactured nanoparticles: their uptake and effects on fisha mechanistic analysis. <i>Ecotoxicology</i> , 2008 , 17, 396-409	2.9	323
47	Estrogen-induced alterations in amh and dmrt1 expression signal for disruption in male sexual development in the zebrafish. <i>Environmental Science & Environmental Science & E</i>	10.3	85
46	Gene expression profiling for understanding chemical causation of biological effects for complex mixtures: a case study on estrogens. <i>Environmental Science & Environmental S</i>	10.3	40
45	Health impacts of estrogens in the environment, considering complex mixture effects. <i>Environmental Health Perspectives</i> , 2007 , 115, 1704-10	8.4	104
44	Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental-specific expression of their mRNA transcripts in fathead minnow (Pimephales	3	65
43	Endocrine disruption. <i>General and Comparative Endocrinology</i> , 2007 , 153, 13-4	3	5
42	An optimised experimental test procedure for measuring chemical effects on reproduction in the fathead minnow, Pimephales promelas. <i>Aquatic Toxicology</i> , 2007 , 81, 90-8	5.1	20
41	Gene expression profiles revealing the mechanisms of anti-androgen- and estrogen-induced feminization in fish. <i>Aquatic Toxicology</i> , 2007 , 81, 219-31	5.1	260
40	Gonadal transcriptome responses and physiological consequences of exposure to oestrogen in breeding zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2007 , 83, 134-42	5.1	76
39	Associations between altered vitellogenin concentrations and adverse health effects in fathead minnow (Pimephales promelas). <i>Aquatic Toxicology</i> , 2007 , 85, 176-83	5.1	65
38	Functional associations between two estrogen receptors, environmental estrogens, and sexual disruption in the roach (Rutilus rutilus). <i>Environmental Science & amp; Technology</i> , 2007 , 41, 3368-74	10.3	50
37	The roach (Rutilus rutilus) as a sentinel for assessing endocrine disruption. <i>Environmental Sciences:</i> an International Journal of Environmental Physiology and Toxicology, 2007 , 14, 235-53		9
36	Toxicogenomics in regulatory ecotoxicology. Environmental Science & amp; Technology, 2006, 40, 4055-6	65 10.3	221

(2001-2006)

35	Multiple molecular effect pathways of an environmental oestrogen in fish. <i>Journal of Molecular Endocrinology</i> , 2006 , 37, 121-34	4.5	113
34	Development and validation of a direct homologous quantitative sandwich ELISA for fathead minnow (Pimephales promelas) vitellogenin. <i>Aquatic Toxicology</i> , 2006 , 78, 202-6	5.1	18
33	Assessing the sensitivity of different life stages for sexual disruption in roach (Rutilus rutilus) exposed to effluents from wastewater treatment works. <i>Environmental Health Perspectives</i> , 2005 , 113, 1299-307	8.4	93
32	Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). <i>Aquatic Toxicology</i> , 2004 , 66, 369-79	5.1	142
31	Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. <i>Environmental Health Perspectives</i> , 2004 , 112, 1725-33	8.4	460
30	Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. <i>Aquatic Toxicology</i> , 2003 , 65, 267-79	5.1	53
29	Relative potencies and combination effects of steroidal estrogens in fish. <i>Environmental Science & Environmental Science</i>	10.3	395
28	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 972-979	3.8	139
27	Window of sensitivity for the estrogenic effects of ethinylestradiol in early life-stages of fathead minnow, Pimephales promelas. <i>Ecotoxicology</i> , 2002 , 11, 423-34	2.9	117
26	Plasma biomarkers in fish provide evidence for endocrine modulation in the Elbe River, Germany. <i>Environmental Science & Description (Communication of the Elbe River)</i> (1988) 1988 1989 1989 1989 1989 1989 1989	10.3	99
25	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002 , 21, 972		7
25 24	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater	3.8	
	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002 , 21, 972 Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology</i>		7
24	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002 , 21, 972 Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 47-54 Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United	3.8	7
24	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002, 21, 972 Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2002, 21, 47-54 Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom Freshwaters. <i>Environmental Toxicology and Chemistry</i> , 2001, 20, 2841-2847 Follicle-stimulating hormone and its alpha and beta subunits in rainbow trout (Oncorhynchus mykiss): purification, characterization, development of specific radioimmunoassays, and their	3.8	7 4 183
24	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002, 21, 972 Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 2002, 21, 47-54 Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom Freshwaters. Environmental Toxicology and Chemistry, 2001, 20, 2841-2847 Follicle-stimulating hormone and its alpha and beta subunits in rainbow trout (Oncorhynchus mykiss): purification, characterization, development of specific radioimmunoassays, and their seasonal plasma and pituitary concentrations in females. Biology of Reproduction, 2001, 65, 288-94 Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). Biology of Reproduction,	3.8 3.8 3.9	7 4 183 41
24 23 22 21	Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works 2002, 21, 972 Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2002, 21, 47-54 Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom Freshwaters. <i>Environmental Toxicology and Chemistry</i> , 2001, 20, 2841-2847 Follicle-stimulating hormone and its alpha and beta subunits in rainbow trout (Oncorhynchus mykiss): purification, characterization, development of specific radioimmunoassays, and their seasonal plasma and pituitary concentrations in females. <i>Biology of Reproduction</i> , 2001, 65, 288-94 Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). <i>Biology of Reproduction</i> , 2001, 65, 1701-9 Nonylphenol affects gonadotropin levels in the pituitary gland and plasma of female rainbow trout.	3.8 3.9 3.9	7 4 183 41 118

17	Development of an in vivo screening assay for estrogenic chemicals using juvenile rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2812-2820	3.8	75
16	Long-Term Temporal Changes in the Estrogenic Composition of Treated Sewage Effluent and Its Biological Effects on Fish. <i>Environmental Science & Environmental Science & Envir</i>	10.3	236
15	Expression and localization of messenger ribonucleic acid for the vitellogenin receptor in ovarian follicles throughout oogenesis in the rainbow trout, Oncorhynchus mykiss. <i>Biology of Reproduction</i> , 1999 , 60, 1057-68	3.9	62
14	An in vivo testing system for endocrine disruptors in fish early life stages using induction of vitellogenin. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 337-347	3.8	207
13	Estrogenic potency of effluent from two sewage treatment works in the United Kingdom. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 932-937	3.8	133
12	Fish p53 as a possible biomarker for genotoxins in the aquatic environment 1999 , 33, 177-184		40
11	An in vivo testing system for endocrine disruptors in fish early life stages using induction of vitellogenin 1999 , 18, 337		10
10	Estrogenic potency of effluent from two sewage treatment works in the United Kingdom 1999 , 18, 932	2	7
9	Widespread Sexual Disruption in Wild Fish. Environmental Science & Eamp; Technology, 1998, 32, 2498-25	06 0.3	1563
8	Molecular characterization and expression of two ovarian lipoprotein receptors in the rainbow trout, Oncorhynchus mykiss. <i>Biology of Reproduction</i> , 1998 , 58, 1146-53	3.9	71
7	Egg quality in fish: what makes a good egg?. Reviews in Fish Biology and Fisheries, 1997, 7, 387-416	6	533
6	Validation of radioimmunoassays for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductivecycle in male and female rainbow trout (Oncorhynchus mykiss). <i>Biology of Reproduction</i> , 1996 , 54, 1375-82	3.9	261
5	Developmental expression and modulation of the vitellogenin receptor in ovarian follicles of the rainbow trout, Oncorhynchus mykiss. <i>The Journal of Experimental Zoology</i> , 1994 , 269, 458-466		17
4	The purification and partial characterization of carp, Cyprinus carpio, vitellogenin. <i>Fish Physiology and Biochemistry</i> , 1990 , 8, 111-20	2.7	43
3	The development of a radioimmunoassay for carp, Cyprinus carpio, vitellogenin. <i>Fish Physiology and Biochemistry</i> , 1990 , 8, 129-40	2.7	61
2	Selectivity of protein sequestration by vitellogenic oocytes of the rainbow trout, Salmo gairdneri. <i>The Journal of Experimental Zoology</i> , 1988 , 248, 199-206		48
1	Quantifying habitat provisioning at macroalgal cultivation sites. Reviews in Aquaculture,	8.9	0