
Zi-Hua Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8307657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of agricultural intensification on ability of natural enemies to control aphids. Scientific Reports, 2015, 5, 8024.	3.3	58
2	Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 2014, 122, 10-15.	3.2	53
3	Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 2019, 155, 145-156.	3.6	52

Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 6]

5	Effects of inter-annual landscape change on interactions between cereal aphids and their natural enemies. Basic and Applied Ecology, 2013, 14, 472-479.	2.7	40
6	Solving the pitfalls of pitfall trapping: a twoâ€circle method for density estimation of groundâ€dwelling arthropods. Methods in Ecology and Evolution, 2013, 4, 865-871.	5.2	33
7	Responses of Cereal Aphids and Their Parasitic Wasps to Landscape Complexity. Journal of Economic Entomology, 2014, 107, 630-637.	1.8	31
8	Approaches and mechanisms for ecologically based pest management across multiple scales. Agriculture, Ecosystems and Environment, 2016, 230, 199-209.	5.3	30
9	Effects of position within wheat field and adjacent habitats on the density and diversity of cereal aphids and their natural enemies. BioControl, 2013, 58, 765-776.	2.0	28
10	<i>Bactrocera dorsalis</i> (Hendel) (Diptera: Tephritidae) is not invasive through Asia: It's been there all along. Journal of Applied Entomology, 2019, 143, 797-801.	1.8	28
11	A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, <i>Bactrocera dorsalis</i> and <i>Bactrocera correcta</i> . Evolutionary Applications, 2019, 12, 1147-1163.	3.1	26
12	Population dynamics and associated factors of cereal aphids and armyworms under global change. Scientific Reports, 2016, 5, 18801.	3.3	23
13	From the inverse density–area relationship to the minimum patch size of a host–parasitoid system. Ecological Research, 2012, 27, 303-309.	1.5	19
14	Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape. Science China Life Sciences, 2013, 56, 758-766.	4.9	18
15	Landscape changes have greater effects than climate changes on six insect pests in China. Science China Life Sciences, 2016, 59, 627-633.	4.9	14
16	Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae). International Journal of Molecular Sciences, 2018, 19, 396.	4.1	14
17	The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants. Environmental Entomology, 2019, 48, 1425-1433.	1.4	14
18	Crop Diversity and Land Simplification Effects on Pest Damage in Northern China. Annals of the Entomological Society of America, 2017, 110, 91-96.	2.5	13

ZI-НИА ZНАО

#	Article	IF	CITATIONS
19	A potential genetic control by suppression of the wing developmental gene wingless in a global invasive pest Bactrocera dorsalis. Journal of Pest Science, 2021, 94, 517-529.	3.7	13
20	Shifts in natural enemy assemblages resulting from landscape simplification account for biocontrol loss in wheat fields. Ecological Research, 2015, 30, 493-498.	1.5	12
21	Habitat heterogeneity stabilizes the spatial and temporal interactions between cereal aphids and parasitic wasps. Basic and Applied Ecology, 2015, 16, 510-518.	2.7	12
22	UV radiation increases mortality and decreases the antioxidant activity in a tephritid fly. Food and Energy Security, 2021, 10, e297.	4.3	12
23	Cropland expansion facilitated the outbreak of cereal aphids during 1951–2010 in China. Science Bulletin, 2015, 60, 1036-1037.	9.0	11
24	The failure of success: cyclic recurrences of a globally invasive pest. Ecological Applications, 2019, 29, e01991.	3.8	10
25	Life table invasion models: spatial progression and speciesâ€specific partitioning. Ecology, 2019, 100, e02682.	3.2	10
26	Plant cover associated with aboveground net primary productivity (ANPP) mediates insect community composition in steppes of Northwest China. Journal of Asia-Pacific Entomology, 2018, 21, 361-366.	0.9	8
27	Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biological Control, 2019, 128, 17-23.	3.0	8
28	Asymmetric response of different functional insect groups to lowâ€grazing pressure in Eurasian steppe in Ningxia. Ecology and Evolution, 2018, 8, 11609-11618.	1.9	7
29	Optimization of Nitrogen Fertilizer Application Enhances Biocontrol Function and Net Income. Journal of Economic Entomology, 2020, 113, 2035-2038.	1.8	7
30	The synergy between climate change and transportation activities drives the propagation of an invasive fruit fly. Journal of Pest Science, 2020, 93, 615-625.	3.7	6
31	Increased nitrogen fertilization inhibits the biocontrol activity promoted by the intercropping partner plant. Insect Science, 2020, 28, 1179-1190.	3.0	6
32	Mild Drought Facilitates the Increase in Wheat Aphid Abundance by Changing Host Metabolism. Annals of the Entomological Society of America, 2021, 114, 79-83.	2.5	6
33	Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Global Ecology and Conservation, 2022, 34, e02021.	2.1	6
34	Tracing dietary origins of aphids and the predatory beetle <i><scp>P</scp>ropylea japonica</i> in agricultural systems using stable isotope analyses. Entomologia Experimentalis Et Applicata, 2015, 155, 87-94.	1.4	5
35	Effects of seed mixture sowing with resistant and susceptible rice on population dynamics of target planthoppers and nonâ€ŧarget stemborers and leaffolders. Pest Management Science, 2018, 74, 1664-1676.	3.4	5
36	Cultivar Mixture Enhances Crop Yield by Decreasing Aphids. Agronomy, 2022, 12, 335.	3.0	5

ZI-НИА ZНАО

#	Article	IF	CITATIONS
37	Plant Species Richness Controls Arthropod Food Web: Evidence From an Experimental Model System. Annals of the Entomological Society of America, 2019, 112, 27-32.	2.5	4
38	The potential geographic distribution of Bactrocera correcta (Diptera: Tephrididae) in China based on eclosion rate model. Applied Entomology and Zoology, 2015, 50, 371-381.	1.2	3
39	Differential temperature responses between <i>Plutella xylostella</i> and its specialist endoâ€larval parasitoid <i>Diadegma semiclausum</i> —Implications for biological control. Insect Science, 2022, 29, 855-864.	3.0	3
40	The asymmetric responses of carabid beetles to steppe fragmentation in Northwest China. Global Ecology and Conservation, 2020, 23, e01058.	2.1	2
41	Potential pest invasion risk posed by international sweet cherry trade. Food and Energy Security, 2021, 10, e257.	4.3	2
42	Landscape pattern affects species composition and abundance of ground-dwelling predator. Journal of Asia-Pacific Entomology, 2015, 18, 331-334.	0.9	1