Susan J Kutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8307455/publications.pdf

Version: 2024-02-01

76326 88630 6,143 169 40 70 citations h-index g-index papers 177 177 177 6782 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	OUP accepted manuscript. , 2022, 10, coab103.		2
2	A Caribou Decline Foreshadowed by Inuit in the Central Canadian Arctic: A Retrospective Analysis. Arctic, 2022, 74, 437-455.	0.4	6
3	Contagious Ecthyma Dermatitis as a Portal of Entry for Erysipelothrix rhusiopathiae in Muskoxen (Ovibos moschatus) of the Canadian Arctic. Journal of Wildlife Diseases, 2022, 58, .	0.8	2
4	Documenting Indigenous Knowledge to Identify and Understand the Stressors of Muskoxen (<i>Ovibos moschatu</i> s) in Nunavut, Canada. Arctic, 2022, 74, 418-436.	0.4	6
5	Actualizing Cultural Humility: An Exploratory Study of Veterinary Students' Participation in a Northern Community Health Rotation. Journal of Veterinary Medical Education, 2022, , e2021013.	0.6	4
6	Brucellosis in the Arctic and Northern Regions. , 2022, , 227-267.		3
7	Draft Genome Assembly of an Iconic Arctic Species: Muskox (Ovibos moschatus). Genes, 2022, 13, 809.	2.4	1
8	Sublethal effects of parasitism on ruminants can have cascading consequences for ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117381119.	7.1	7
9	Evaluating the use of hair as a non-invasive indicator of trace mineral status in woodland caribou (Rangifer tarandus caribou). PLoS ONE, 2022, 17, e0269441.	2.5	9
10	Links Between Individual Performance, Trace Elements and Stable Isotopes in an Endangered Caribou Population. Global Ecology and Conservation, 2022, , e02234.	2.1	2
11	Corynebacterium freneyi Bacterial Septicemia Secondary to Contagious Ecthyma in a Wild Muskox (Ovibos moschatus). Journal of Wildlife Diseases, 2021, 57, 225-229.	0.8	2
12	Soil transmitted helminth infection in primary school children varies with ecozone in the Ngorongoro Conservation Area, Tanzania. Tropical Medicine and Health, 2021, 49, 22.	2.8	4
13	Fecal glucocorticoid metabolites reflect hypothalamic–pituitary–adrenal axis activity in muskoxen (Ovibos moschatus). PLoS ONE, 2021, 16, e0249281.	2.5	2
14	Qiviut cortisol reflects hypothalamic–pituitary–adrenal axis activity in muskoxen (Ovibos) Tj ETQq0 0 0 rgBT	/Qvgrlock	1g Tf 50 222
15	Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Frontiers in Public Health, 2021, 9, 627654.	2.7	23
16	Response to Charlier et al.: Climate–Disease Feedbacks Mediated by Livestock Methane Emissions Are Plausible. Trends in Ecology and Evolution, 2021, 36, 578-579.	8.7	2
17	Zoonotic pathogens in wild muskoxen (<i>Ovibos moschatus</i>) and domestic sheep (<i>Ovis) Tj ETQq1 1 0.78</i>	84314 rgB ⁻	T /Overlock 1
18	11 years of regular access to subsidized veterinary services is associated with improved dog health and welfare in remote northern communities. Preventive Veterinary Medicine, 2021, 196, 105471.	1.9	7

#	Article	IF	CITATIONS
19	Congenital cataract and spherophakia leading to starvation in a free-ranging muskox neonate from the Northwest Territories, Canada. Journal of Veterinary Diagnostic Investigation, 2021, , 104063872110574.	1.1	0
20	Muskox status, recent variation, and uncertain future. Ambio, 2020, 49, 805-819.	5 . 5	45
21	Integrating livestock management and telemetry data to assess disease transmission risk between wildlife and livestock. Preventive Veterinary Medicine, 2020, 174, 104846.	1.9	4
22	Already at the bottom? Demographic declines are unlikely further to undermine genetic diversity of a large Arctic ungulate: muskox, Ovibos moschatus (Artiodactyla: Bovidae). Biological Journal of the Linnean Society, 2020, 129, 459-469.	1.6	12
23	Infectious Diseases, Livestock, and Climate: A Vicious Cycle?. Trends in Ecology and Evolution, 2020, 35, 959-962.	8.7	10
24	Adaptations, life-history traits and ecological mechanisms of parasites to survive extremes and environmental unpredictability in the face of climate change. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 308-317.	1.5	26
25	Indigenous community perspectives on dogs in Northern Canada after 10 years of veterinary services indicates improved animal and human welfare. Preventive Veterinary Medicine, 2020, 181, 105061.	1.9	17
26	Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing. Scientific Reports, 2020, 10, 17323.	3.3	26
27	Parasite intensity drives fetal development and sex allocation in a wild ungulate. Scientific Reports, 2020, 10, 15626.	3.3	12
28	Linking co-monitoring to co-management: bringing together local, traditional, and scientific knowledge in a wildlife status assessment framework. Arctic Science, 2020, 6, 247-266.	2.3	30
29	Reshaping the future of ethnobiology research after the COVID-19 pandemic. Nature Plants, 2020, 6, 723-730.	9.3	68
30	The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda:) Tj ETQq0 0 0 rgBT /Overland Wildlife, 2020, 11, 93-102.	ock 10 Tf 1.5	50 307 Td (P 7
31	Living with liver flukes: Does migration matter?. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 76-84.	1.5	5
32	Phenotypic plasticity and local adaptation in freeze tolerance: Implications for parasite dynamics in a changing world. International Journal for Parasitology, 2020, 50, 161-169.	3.1	5
33	Renal trace elements in barren-ground caribou subpopulations: Temporal trends and differing effects of sex, age and season. Science of the Total Environment, 2020, 724, 138305.	8.0	9
34	Novel insights into serodiagnosis and epidemiology of Erysipelothrix rhusiopathiae, a newly recognized pathogen in muskoxen (Ovibos moschatus). PLoS ONE, 2020, 15, e0231724.	2.5	14
35	Exposure of the Gulf of St. Lawrence grey seal Halichoerus grypus population to potentially zoonotic infectious agents. Diseases of Aquatic Organisms, 2020, 142, 105-118.	1.0	3
36	Title is missing!. , 2020, 15, e0231724.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0231724.		O
38	Title is missing!. , 2020, 15, e0231724.		0
39	Title is missing!. , 2020, 15, e0231724.		0
40	A Transdisciplinary Approach toÂBrucellaÂin Muskoxen of the Western Canadian Arctic 1989–2016. EcoHealth, 2019, 16, 488-501.	2.0	19
41	Multi-pathogen serological survey of migratory caribou herds: A snapshot in time. PLoS ONE, 2019, 14, e0219838.	2.5	17
42	Introduction to the Special Issue on †Emerging Zoonoses and Wildlife'. International Journal for Parasitology: Parasites and Wildlife, 2019, 9, 322.	1.5	11
43	Adaptations and phenotypic plasticity in developmental traits of Marshallagia marshalli. International Journal for Parasitology, 2019, 49, 789-796.	3.1	10
44	"Two-eyed seeing―supports wildlife health. Science, 2019, 364, 1135-1137.	12.6	83
45	An unusual case of Erysipelothrix rhusiopathiae prosthetic joint infection from the Canadian Arctic: whole genome sequencing unable to identify a zoonotic source. BMC Infectious Diseases, 2019, 19, 282.	2.9	16
46	HEALTH SURVEY OF BOREAL CARIBOU (RANGIFER TARANDUS CARIBOU) IN NORTHEASTERN BRITISH COLUMBIA, CANADA. Journal of Wildlife Diseases, 2019, 55, 544.	0.8	25
47	Geography, seasonality, and hostâ€associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecology and Evolution, 2019, 9, 13202-13217.	1.9	21
48	Parasite prevalence, infection intensity and richness in an endangered population, the Atlantic-Gaspésie caribou. International Journal for Parasitology: Parasites and Wildlife, 2018, 7, 90-94.	1.5	18
49	Varestrongylus (Nematoda: Protostrongylidae), lungworms of ungulates: a phylogenetic framework based on comparative morphology. Parasitology Research, 2018, 117, 2075-2083.	1.6	5
50	Historical biogeography among species of Varestrongylus lungworms (Nematoda: Protostrongylidae) in ungulates: episodic expansion and host colonization linking Eurasia and North America. Parasitology Research, 2018, 117, 2125-2137.	1.6	3
51	Local knowledge to enhance wildlife population health surveillance: Conserving muskoxen and caribou in the Canadian Arctic. Biological Conservation, 2018, 217, 337-348.	4.1	52
52	Are we adequately evaluating subsidized veterinary services? A scoping review. Preventive Veterinary Medicine, 2018, 157, 59-69.	1.9	13
53	Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasites and Vectors, 2018, 11, 400.	2.5	12
54	Diversity of gastrointestinal helminths in Dall's sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE, 2018, 13, e0192825.	2.5	15

#	Article	IF	CITATIONS
55	Iqaluktutiaq Voices: Local Perspectives about the Importance of Muskoxen, Contemporary and Traditional Use and Practices + Supplementary Appendices S1–S5 (See Article Tools). Arctic, 2018, 71, .	0.4	20
56	The Impact of Infectious Agents on Rangifer Populations. , 2018, , 315-352.		3
57	Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. Journal of Helminthology, 2017, 91, 409-421.	1.0	36
58	Discovery of herpesviruses in Canadian wildlife. Archives of Virology, 2017, 162, 449-456.	2.1	5
59	The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science, 2017, 3, 585-617.	2.3	50
60	Morphological keys to advance the understanding of protostrongylid biodiversity in caribou (Rangifer spp.) at high latitudes. International Journal for Parasitology: Parasites and Wildlife, 2017, 6, 331-339.	1.5	9
61	Experimental Life-Cycle ofVarestrongylus eleguneniensis(Nematoda: Protostrongylidae) in a Captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). Journal of Parasitology, 2017, 103, 584-587.	0.7	7
62	Participatory science and innovation for improved sanitation and hygiene: process and outcome evaluation of project SHINE, a school-based intervention in Rural Tanzania. BMC Public Health, 2017, 17, 172.	2.9	22
63	Qiviut cortisol in muskoxen as a potential tool for informing conservation strategies. , 2017, 5, cox052.		18
64	Muskox Health Ecology Symposium 2016: Gathering to Share Knowledge on Umingmak in a Time of Rapid Change. Arctic, 2017, 70, 225.	0.4	19
65	5. Filarioid nematodes, threat to arctic food safety and security. , 2017, , 101-120.		3
66	<i>Onchocerca lupi</i> Nematodes in Dogs Exported from the United States into Canada. Emerging Infectious Diseases, 2016, 22, 1477-1479.	4.3	32
67	Bacterial Genomics Reveal the Complex Epidemiology of an Emerging Pathogen in Arctic and Boreal Ungulates. Frontiers in Microbiology, 2016, 7, 1759.	3.5	44
68	Transformational Principles for NEON Sampling of Mammalian Parasites and Pathogens: A Response to Springer and Colleagues. BioScience, 2016, 66, 917-919.	4.9	28
69	Genomic analysis of the multi-host pathogen Erysipelothrix rhusiopathiae reveals extensive recombination as well as the existence of three generalist clades with wide geographic distribution. BMC Genomics, 2016, 17, 461.	2.8	49
70	Human-Assisted Dispersal Results in the Northernmost Canadian Record of the American Dog Tick, <i>Dermacentor variabilis</i> (lxodida: lxodidae). Entomological News, 2016, 126, 132-137.	0.2	3
71	†WE CAN'T GET WORMS FROM COW DUNG': REPORTED KNOWLEDGE OF PARASITISM AMONG PAST YOUTH ATTENDING SECONDARY SCHOOL IN THE NGORONGORO CONSERVATION AREA, TANZANIA. Journal of Biosocial Science, 2016, 48, 746-766.	ORALIST	5
72	Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study. Canadian Journal of Zoology, 2016, 94, 607-617.	1.0	8

#	Article	IF	Citations
73	Contagious Ecthyma, Rangiferine Brucellosis, and Lungworm Infection in a Muskox (<i>Ovibos) Tj ETQq1 1 0.784</i>	314 rgBT	/Overlock L
74	Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk. PLoS ONE, 2016, 11, e0159319.	2.5	15
7 5	Evaluation of a portable oxygen concentrator to provide fresh gas flow to dogs undergoing anesthesia. Canadian Veterinary Journal, 2016, 57, 614-8.	0.0	4
76	Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces. Parasites and Vectors, 2015, 8, 281.	2.5	70
77	"The Maasai Need Cows and the Cows Need Maasai,―the Use of a Photovoice Approach to Assess Animal Health Needs. Frontiers in Veterinary Science, 2015, 2, 46.	2.2	4
78	Assessing individual patterns of <i><scp>E</scp>chinococcus multilocularis</i> infection in urban coyotes: nonâ€invasive genetic sampling as an epidemiological tool. Journal of Applied Ecology, 2015, 52, 434-442.	4.0	11
79	Patterns of ectoparasitism in North American red squirrels (Tamiasciurus hudsonicus): Sex-biases, seasonality, age, and effects on male body condition. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 301-306.	1.5	10
80	Morphological and morphometric differentiation of dorsal-spined first stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 283-290.	1.5	16
81	Climate change and Arctic parasites. Trends in Parasitology, 2015, 31, 181-188.	3.3	35
82	Youth-Driven Innovation in Sanitation Solutions for Maasai Pastoralists in Tanzania: Conceptual Framework and Study Design. Global Journal of Health Education and Promotion, 2015, 16, .	0.1	4
83	Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Canadian Veterinary Journal, 2015, 56, 560-3.	0.0	42
84	Gastrointestinal parasites in an isolated Norwegian population of wild red deer (Cervus elaphus). Acta Veterinaria Scandinavica, 2014, 56, 59.	1.6	18
85	Resurrection and redescription of Varestrongylus alces (Nematoda: Protostrongylidae), a lungworm of the Eurasian moose (Alces alces), with report on associated pathology. Parasites and Vectors, 2014, 7, 557.	2.5	18
86	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	4.7	135
87	Cascading Effects of Climate Change: Do Hurricaneâ€damaged Forests Increase Risk of Exposure to Parasites?. Biotropica, 2014, 46, 25-31.	1.6	23
88	Varestrongylus eleguneniensis sp. n. (Nematoda: Protostrongylidae): a widespread, multi-host lungworm of wild North American ungulates, with an emended diagnosis for the genus and explorations of biogeography. Parasites and Vectors, 2014, 7, 556.	2.5	27
89	Dog-walking behaviours affect gastrointestinal parasitism in park-attending dogs. Parasites and Vectors, 2014, 7, 429.	2.5	45
90	Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 209-219.	1.5	30

#	Article	IF	CITATIONS
91	Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter?. Veterinary Research, 2014, 45, 18.	3.0	21
92	What attracts elk onto cattle pasture? Implications for inter-species disease transmission. Preventive Veterinary Medicine, 2014, 117, 326-339.	1.9	14
93	BLOOD COLLECTED ON FILTER PAPER FOR WILDLIFE SEROLOGY: EVALUATING STORAGE AND TEMPERATURE CHALLENGES OF FIELD COLLECTIONS. Journal of Wildlife Diseases, 2014, 50, 308.	0.8	22
94	Occurrence of Mycobacterium avium subspecies paratuberculosis and Neospora caninum in Alberta cow-calf operations. Preventive Veterinary Medicine, 2014, 117, 95-102.	1.9	10
95	Sentinels in a climatic outpost: Endoparasites in the introduced muskox (Ovibos moschatus wardi) population of Dovrefjell, Norway. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 154-160.	1.5	18
96	A walk on the tundra: Host–parasite interactions in an extreme environment. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 198-208.	1.5	45
97	Spatial heterogeneity and temporal variations in Echinococcus multilocularis infections in wild hosts in a North American urban setting. International Journal for Parasitology, 2014, 44, 457-465.	3.1	51
98	BLOOD COLLECTED ON FILTER PAPER FOR WILDLIFE SEROLOGY: DETECTING ANTIBODIES TO <i>NEOSPORA CANINUM</i> NEST NILE VIRUS, AND FIVE BOVINE VIRUSES IN REINDEER. Journal of Wildlife Diseases, 2014, 50, 297-307.	0.8	15
99	Gimme shelter – the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change. Global Change Biology, 2013, 19, 3291-3305.	9.5	42
100	Divergent parasite faunas in adjacent populations of west Greenland caribou: Natural and anthropogenic influences on diversity. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 197-202.	1.5	17
101	Predictors of Parasitism in Wild White-Faced Capuchins (Cebus capucinus). International Journal of Primatology, 2013, 34, 1137-1152.	1.9	18
102	Ecological Consequences of Sea-Ice Decline. Science, 2013, 341, 519-524.	12.6	461
103	Metabolic approaches to understanding climate change impacts on seasonal hostâ€macroparasite dynamics. Ecology Letters, 2013, 16, 9-21.	6.4	116
104	A Nearctic parasite in a Palearctic host: Parelaphostrongylus andersoni (Nematoda;) Tj ETQq0 0 0 rgBT /Overlock Parasitology: Parasites and Wildlife, 2013, 2, 119-123.	10 Tf 50 2 1.5	227 Td (Proto 14
105	The modification and evaluation of an ELISA test for the surveillance of Mycobacterium avium subsp. paratuberculosis infection in wild ruminants. BMC Veterinary Research, 2013, 9, 5.	1.9	29
106	Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science, 2013, 341, 514-519.	12.6	951
107	VARIABLES ASSOCIATED WITH BESNOITIA TARANDI PREVALENCE AND CYST DENSITY IN BARREN-GROUND CARIBOU (RANGIFER TARANDUS) POPULATIONS. Journal of Wildlife Diseases, 2013, 49, 29-38.	0.8	12
108	Oslerus osleri (Metastrongyloidea; Filaroididae) in Gray Wolves (Canis lupus) from Banff National Park, Alberta, Canada. Journal of Wildlife Diseases, 2013, 49, 422-426.	0.8	4

#	Article	IF	CITATIONS
109	Contrasting Results of Culture-Dependent and Molecular Analyses of Mycobacterium avium subsp. paratuberculosis from Wood Bison. Applied and Environmental Microbiology, 2013, 79, 4448-4454.	3.1	10
110	Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Global Change Biology, 2013, 19, 3254-3262.	9.5	73
111	A Coprological Survey of Parasites in White-Faced Capuchins (Cebus capucinus) from Sector Santa Rosa, ACG, Costa Rica. Folia Primatologica, 2013, 84, 102-114.	0.7	29
112	Parasite Removal Improves Reproductive Success of Female North American Red Squirrels (Tamiasciurus hudsonicus). PLoS ONE, 2013, 8, e55779.	2.5	23
113	CircumArctic Rangifer monitoring and assessment (CARMA) network – origins, goals, accomplishments and future. Rangifer, 2013, 33, 141.	0.6	2
114	Differences in parasite diversity, prevalence, and intensity assessed through analyses of fecal samples from two West Greenland caribou populations. Rangifer, 2013, 33, 177.	0.6	4
115	OCCURRENCE, DIAGNOSIS, AND STRAIN TYPING OF MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS INFECTION IN ROCKY MOUNTAIN BIGHORN SHEEP (OVIS CANADENSIS CANADENSIS) IN SOUTHWESTERN ALBERTA. Journal of Wildlife Diseases, 2012, 48, 1-11.	0.8	22
116	SENSITIVITY OF DOUBLE CENTRIFUGATION SUGAR FECAL FLOTATION FOR DETECTING INTESTINAL HELMINTHS IN COYOTES (CANIS LATRANS). Journal of Wildlife Diseases, 2012, 48, 717-723.	0.8	19
117	COMPARISON OF GROSS VISUAL AND MICROSCOPIC ASSESSMENT OF FOUR ANATOMIC SITES TO MONITOR BESNOITIA TARANDI IN BARREN-GROUND CARIBOU (RANGIFER TARANDUS). Journal of Wildlife Diseases, 2012, 48, 732-738.	0.8	16
118	DETECTION OF MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS IN SEVERAL HERDS OF ARCTIC CARIBOU (RANGIFER TARANDUS SSP.). Journal of Wildlife Diseases, 2012, 48, 918-924.	0.8	5
119	Parasites in Ungulates of Arctic North America and Greenland. Advances in Parasitology, 2012, 79, 99-252.	3.2	78
120	Linear enamel hypoplasia in caribou (<i>Rangifer tarandus groenlandicus</i>): A potential tool to assess population health. Wildlife Society Bulletin, 2012, 36, 554-560.	1.6	6
121	Discovery and Description of the "Davtiani―Morphotype for Teladorsagia boreoarcticus (Trichostrongyloidea: Ostertagiinae) Abomasal Parasites In Muskoxen, Ovibos moschatus, and Caribou, Rangifer tarandus, from the North American Arctic: Implications for Parasite Faunal Diversity, Journal of Parasitology, 2012, 98, 355-364.	0.7	6
122	Development and availability of the free-living stages of <i>Ostertagia gruehneri</i> , an abomasal parasite of barrenground caribou (<i>Rangifer tarandus groenlandicus</i>), on the Canadian tundra. Parasitology, 2012, 139, 1093-1100.	1.5	36
123	Obligate larval inhibition of <i>Ostertagia gruehneri</i> in <i>Rangifer tarandus</i> ? Causes and consequences in an Arctic system. Parasitology, 2012, 139, 1339-1345.	1.5	18
124	Northern Host–Parasite Assemblages. Advances in Parasitology, 2012, 79, 1-97.	3.2	106
125	Defining parasite biodiversity at high latitudes of North America: new host and geographic records for Onchocerca cervipedis (Nematoda: Onchocercidae) in moose and caribou. Parasites and Vectors, 2012, 5, 242.	2.5	17
126	Gastrointestinal parasites of coyotes (<i>CanisÂlatrans</i>) in the metropolitan area of Calgary, Alberta, Canada. Canadian Journal of Zoology, 2012, 90, 1023-1030.	1.0	38

#	Article	IF	CITATIONS
127	Echinococcus multilocularisin Urban Coyotes, Alberta, Canada. Emerging Infectious Diseases, 2012, 18, 1625-1628.	4.3	37
128	<i>Echinococcus multilocularis</i> in Urban Coyotes, Alberta, Canada. Emerging Infectious Diseases, 2012, 18, 1625-1628.	4.3	64
129	Cortisol and corticosterone independence in cortisol-dominant wildlife. General and Comparative Endocrinology, 2012, 177, 113-119.	1.8	76
130	Polar Diseases and Parasites: A Conservation Paradigm Shift. , 2012, , 247-261.		3
131	Arctic parasitology: why should we care?. Trends in Parasitology, 2011, 27, 239-245.	3.3	62
132	FILTER-PAPER BLOOD SAMPLES FOR ELISA DETECTION OF BRUCELLA ANTIBODIES IN CARIBOU. Journal of Wildlife Diseases, 2011, 47, 12-20.	0.8	52
133	Physiological and behavioural effects of hypoxemia in reindeer (Rangifer tarandus) immobilised with xylazine-etorphine. Animal Production Science, 2011, 51, 355.	1.3	15
134	Seroepidemiology of respiratory (group 2) canine coronavirus, canine parainfluenza virus, and Bordetella bronchiseptica infections in urban dogs in a humane shelter and in rural dogs in small communities. Canadian Veterinary Journal, 2011, 52, 861-8.	0.0	9
135	The prevalence of intestinal parasites in dogs and cats in Calgary, Alberta. Canadian Veterinary Journal, 2011, 52, 1323-8.	0.0	39
136	Amplification of the Second Internal Transcribed Spacer Ribosomal DNA of Individual Trichostrongylid Nematode Larvae by Nested Polymerase Chain Reaction. Journal of Veterinary Diagnostic Investigation, 2010, 22, 433-437.	1.1	8
137	Parasites, Primates, and Ant-Plants: Clues to the Life Cycle of Controrchis spp. in Black Howler Monkeys (Alouatta pigra) in Southern Belize. Journal of Wildlife Diseases, 2010, 46, 1330-1334.	0.8	21
138	Evaluation and delivery of domestic animal health services in remote communities in the Northwest Territories: A case study of status and needs. Canadian Veterinary Journal, 2010, 51, 1115-22.	0.0	24
139	Where Are the Parasites?. Science, 2009, 326, 1187-1188.	12.6	18
140	Ecology of the gastrointestinal parasites of <i>Colobus vellerosus</i> at Boabengâ€Fiema, Ghana: Possible anthropozoonotic transmission. American Journal of Physical Anthropology, 2009, 140, 498-507.	2.1	47
141	Fostering Community-Based Wildlife Health Monitoring and Research in the Canadian North. EcoHealth, 2009, 6, 266-278.	2.0	74
142	Amphibian chytrid fungus and ranaviruses in the Northwest Territories, Canada. Diseases of Aquatic Organisms, 2009, 92, 231-240.	1.0	31
143	The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Veterinary Parasitology, 2009, 163, 217-228.	1.8	141
144	Parasite Zoonoses and Wildlife: Emerging Issues. International Journal of Environmental Research and Public Health, 2009, 6, 678-693.	2.6	98

#	Article	IF	Citations
145	Biodiversity and springtime patterns of egg production and development for parasites of the Chisana Caribou herd, Yukon Territory, Canada. Rangifer, 2009, 29, 25-37.	0.6	11
146	Giardia assemblage A: human genotype in muskoxen in the Canadian Arctic. Parasites and Vectors, 2008, 1, 32.	2.5	43
147	Dogs as Sources and Sentinels of Parasites in Humans and Wildlife, Northern Canada. Emerging Infectious Diseases, 2008, 14, 60-63.	4.3	113
148	Integrated Approaches and Empirical Models for Investigation of Parasitic Diseases in Northern Wildlife. Emerging Infectious Diseases, 2008, 14, 10-17.	4.3	81
149	PROTOSTRONGYLID PARASITES AND PNEUMONIA IN CAPTIVE AND WILD THINHORN SHEEP (OVIS DALLI). Journal of Wildlife Diseases, 2007, 43, 189-205.	0.8	21
150	Serendipitous discovery of a novel protostrongylid (Nematoda: Metastrongyloidea) in caribou, muskoxen, and moose from high latitudes of North America based on DNA sequence comparisons. Canadian Journal of Zoology, 2007, 85, 1143-1156.	1.0	45
151	Climate change and the epidemiology of protostrongylid nematodes in northern ecosystems:Parelaphostrongylus odocoileiandProtostrongylus stilesiin Dall's sheep (Ovis d. dalli). Parasitology, 2006, 132, 387-401.	1.5	73
152	The potential impact of climate change on infectious diseases of Arctic fauna. International Journal of Circumpolar Health, 2005, 64, 468-477.	1.2	74
153	Beringia: Intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and Quaternary. Mammal Study, 2005, 30, S33-S44.	0.6	81
154	GEOGRAPHIC DISTRIBUTION OF THE MUSCLE-DWELLING NEMATODE PARELAPHOSTRONGYLUS ODOCOILEI IN NORTH AMERICA, USING MOLECULAR IDENTIFICATION OF FIRST-STAGE LARVAE. Journal of Parasitology, 2005, 91, 574-584.	0.7	52
155	CAUDAL POLYMORPHISM AND CEPHALIC MORPHOLOGY AMONG FIRST-STAGE LARVAE OF PARELAPHOSTRONGYLUS ODOCOILEI (PROTOSTRONGYLIDAE: ELAPHOSTRONGYLINAE) IN DALL'S SHEEP FROM THE MACKENZIE MOUNTAINS, CANADA. Journal of Parasitology, 2005, 91, 1318-1325.	0.7	11
156	Global warming is changing the dynamics of Arctic host–parasite systems. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2571-2576.	2.6	261
157	MUSKOX LUNGWORM (UMINGMAKSTRONGYLUS PALLIKUUKENSIS) DOES NOT ESTABLISH IN EXPERIMENTALLY EXPOSED THINHORN SHEEP (OVIS DALLI). Journal of Wildlife Diseases, 2004, 40, 197-204.	0.8	11
158	"Emerging" Parasitic Infections in Arctic Ungulates. Integrative and Comparative Biology, 2004, 44, 109-118.	2.0	98
159	Protostrongylus stilesi (Nematoda: Protostrongylidae): Ecological Isolation and Putative Host-Switching Between Dall's Sheep and Muskoxen in a Contact Zone. Comparative Parasitology, 2002, 69, 1-9.	0.4	43
160	Development of the muskox lungworm, Umingmakstrongylus pallikuukensis (Protostrongylidae), in gastropods in the Arctic. Canadian Journal of Zoology, 2002, 80, 1977-1985.	1.0	29
161	Umingmakstrongylus Pallikuukensis(Nematoda: Protostrongylidae) in Gastropods: Larval Morphology, Morphometrics, and Development Rates. Journal of Parasitology, 2001, 87, 527-535.	0.7	26
162	A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends in Parasitology, 2001, 17, 276-280.	3.3	32

#	Article	IF	CITATIONS
163	Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae) in Gastropods: Larval Morphology, Morphometrics, and Development Rates. Journal of Parasitology, 2001, 87, 527.	0.7	2
164	NEW HOST AND GEOGRAPHIC RECORDS FOR TWO PROTOSTRONGYLIDS IN DALL'S SHEEP. Journal of Wildlife Diseases, 2001, 37, 761-774.	0.8	38
165	TRACE MINERAL AND VITAMIN CONCENTRATIONS IN THE LIVER AND SERUM OF WILD MUSKOXEN FROM VICTORIA ISLAND. Journal of Wildlife Diseases, 2000, 36, 301-307.	0.8	12
166	A Lung Nematode in Canadian Arctic Muskoxen. Veterinary Clinics of North America - Food Animal Practice, 1999, 15, 359-377.	1.2	7
167	Structure, Biodiversity, and Historical Biogeography of Nematode Faunas in Holarctic Ruminants: Morphological and Molecular Diagnoses for Teladorsagia boreoarcticus n. sp. (Nematoda:) Tj ETQq1 1 0.784314 1999, 85, 910.	rgBT/Ove	erlock 10 Tf 5
168	Parasites in Grizzly Bears from the Central Canadian Arctic. Journal of Wildlife Diseases, 1999, 35, 618-621.	0.8	54
169	Standardized monitoring of Rangifer health during International Polar Year. Rangifer, 0, , 91-114.	0.6	15