Ralph A Nixon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8307275/ralph-a-nixon-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164	29,191	77	170
papers	citations	h-index	g-index
179 ext. papers	32,847 ext. citations	8.1 avg, IF	7.35 L-index

#	Paper	IF	Citations
164	Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca efflux and disrupted by PSEN1 loss of function <i>Science Advances</i> , 2022 , 8, eabj5716	14.3	1
163	Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. <i>Cell Reports</i> , 2021 , 35, 109034	10.6	15
162	Alzheimer disease. <i>Nature Reviews Disease Primers</i> , 2021 , 7, 33	51.1	114
161	Assessing Rab5 Activation in Health and Disease. <i>Methods in Molecular Biology</i> , 2021 , 2293, 273-294	1.4	1
160	Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. <i>Frontiers in Neuroscience</i> , 2021 , 15, 689938	5.1	10
159	The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2020 , 1868, 140443	4	28
158	Neurofilaments: neurobiological foundations for biomarker applications. <i>Brain</i> , 2020 , 143, 1975-1998	11.2	56
157	🛘 -adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. <i>Journal of Molecular Biology</i> , 2020 , 432, 2633-26	5 6 .5	9
156	Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. <i>Cell Reports</i> , 2020 , 33, 108420	10.6	26
155	Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-LTTF (C99). Journal of Neuroscience, 2019 , 39, 5255-5268	6.6	65
154	Lysosome trafficking and signaling in health and neurodegenerative diseases. <i>Neurobiology of Disease</i> , 2019 , 122, 94-105	7.5	130
153	mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy. <i>Cell Death and Disease</i> , 2019 , 10, 563	9.8	46
152	Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. <i>Autophagy</i> , 2019 , 15, 543-557	10.2	32
151	Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. <i>Free Radical Biology and Medicine</i> , 2018 , 114, 40-51	7.8	94
150	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. <i>Nature Reviews Drug Discovery</i> , 2018 , 17, 660-688	64.1	232
149	Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors. <i>Translational Psychiatry</i> , 2018 , 8, 167	8.6	19
148	Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice. <i>Human Molecular Genetics</i> , 2017 , 26, 843-859	5.6	20

(2014-2017)

147	Neurofilaments and Neurofilament Proteins in Health and Disease. <i>Cold Spring Harbor Perspectives in Biology</i> , 2017 , 9,	10.2	228
146	Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. <i>FASEB Journal</i> , 2017 , 31, 2729-2743	0.9	159
145	Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Research Bulletin, 2016 , 126, 334-346	3.9	38
144	Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. <i>Autophagy</i> , 2016 , 12, 2467-2483	10.2	174
143	The Lysosome in Aging-Related Neurodegenerative Diseases 2016 , 137-179		2
142	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
141	Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. <i>Neurobiology of Aging</i> , 2016 , 39, 90-8	5.6	52
140	Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome. <i>Current Alzheimer Research</i> , 2016 , 13, 35-52	3	27
139	Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice. <i>Journal of Neurochemistry</i> , 2016 , 137, 253-65	6	27
138	Autophagy Enhancers, are we there Yet? 2016 , 315-356		1
137	Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. <i>Ageing Research Reviews</i> , 2016 , 32, 75-88	12	231
136	Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. <i>Cell Reports</i> , 2015 , 12, 1430-44	10.6	210
135	Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of APP metabolites in the Tg2576 mouse model of Alzheimer's disease. <i>Experimental Neurology</i> , 2015 , 264, 82-9	9 ⁵ 1 ^{.7}	40
135		9 ⁵ 1 ⁷	40 159
	metabolites in the Tg2576 mouse model of Alzheimer's disease. <i>Experimental Neurology</i> , 2015 , 264, 82-9. Down syndrome and Alzheimer's disease: Common pathways, common goals. <i>Alzheimeris and Dementia</i> , 2015 , 11, 700-9.		
134	metabolites in the Tg2576 mouse model of Alzheimer's disease. <i>Experimental Neurology</i> , 2015 , 264, 82-9. Down syndrome and Alzheimer's disease: Common pathways, common goals. <i>Alzheimeris and Dementia</i> , 2015 , 11, 700-9	1.2	159
134	metabolites in the Tg2576 mouse model of Alzheimer's disease. <i>Experimental Neurology</i> , 2015 , 264, 82-9. Down syndrome and Alzheimer's disease: Common pathways, common goals. <i>Alzheimeris and Dementia</i> , 2015 , 11, 700-9. Dissociation of Axonal Neurofilament Content from Its Transport Rate. <i>PLoS ONE</i> , 2015 , 10, e0133848. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a	3.7	159

129	Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. <i>Journal of Neuroscience</i> , 2014 , 34, 9222-34	6.6	75
128	2014 Report on the Milestones for the US National Plan to Address Alzheimer's Disease. <i>Alzheimeris and Dementia</i> , 2014 , 10, S430-52	1.2	57
127	Alzheimer neurodegeneration, autophagy, and Abeta secretion: the ins and outs (comment on DOI 10.1002/bies.201400002). <i>BioEssays</i> , 2014 , 36, 547	4.1	13
126	The role of autophagy in neurodegenerative disease. <i>Nature Medicine</i> , 2013 , 19, 983-97	50.5	1302
125	Immunization targeting a minor plaque constituent clears Eamyloid and rescues behavioral deficits in an Alzheimer's disease mouse model. <i>Neurobiology of Aging</i> , 2013 , 34, 137-45	5.6	32
124	Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. <i>European Journal of Neuroscience</i> , 2013 , 37, 1949-61	3.5	234
123	Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime. <i>Biochemical Society Transactions</i> , 2013 , 41, 1495-502	5.1	62
122	Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-laecretion via deregulated lysosomal exocytosis. <i>Nature Communications</i> , 2013 , 4, 2734	17.4	76
121	Neurofilaments at a glance. <i>Journal of Cell Science</i> , 2012 , 125, 3257-63	5.3	230
120	Calpastatin modulates APP processing in the brains of Eamyloid depositing but not wild-type mice. <i>Neurobiology of Aging</i> , 2012 , 33, 1125.e9-18	5.6	11
119	Autophagy and neuronal cell death in neurological disorders. <i>Cold Spring Harbor Perspectives in Biology</i> , 2012 , 4,	10.2	114
118	Guidelines for the use and interpretation of assays for monitoring autophagy. <i>Autophagy</i> , 2012 , 8, 445	-5 44 .2	2783
117	The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network. <i>PLoS ONE</i> , 2012 , 7, e44320	3.7	25
116	AUTOPHAGY FAILURE IN ALZHEIMERS DISEASE AND LYSOSOMAL STORAGE DISORDERS: A COMMON PATHWAY TO NEURODEGENERATION? 2012 , 237-257		O
115	Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. <i>Journal of Neuroscience</i> , 2012 , 32, 8501-8	6.6	69
114	The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2012 , 2,	5.4	119
113	Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. <i>Journal of Chemical Neuroanatomy</i> , 2011 , 42, 102-10	3.2	85
112	Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiology of Aging, 2011, 32, 2016-29	5.6	37

(2009-2011)

111	Mechanisms of neural and behavioral dysfunction in Alzheimer's disease. <i>Molecular Neurobiology</i> , 2011 , 43, 163-79	6.2	12
110	Autophagy failure in Alzheimer's diseaselocating the primary defect. <i>Neurobiology of Disease</i> , 2011 , 43, 38-45	7.5	454
109	Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. <i>Autophagy</i> , 2011 , 7, 1562-3	10.2	63
108	Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. <i>Autophagy</i> , 2011 , 7, 788-9	10.2	80
107	Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. <i>Journal of Neuroscience</i> , 2011 , 31, 7817-30	6.6	316
106	Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. <i>Brain</i> , 2011 , 134, 258-77	11.2	345
105	The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. <i>PLoS ONE</i> , 2011 , 6, e17087	3.7	35
104	Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 1630-5	11.5	216
103	Rapamycin induces autophagic flux in neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, E181; author reply E182	11.5	23
102	Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. <i>Human Molecular Genetics</i> , 2010 , 19, 3219-32	5.6	178
101	Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression. <i>Biological Psychiatry</i> , 2010 , 68, 885-93	7.9	200
100	The contributions of myelin and axonal caliber to transverse relaxation time in shiverer and neurofilament-deficient mouse models. <i>NeuroImage</i> , 2010 , 51, 1098-105	7.9	21
99	Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. <i>Cell</i> , 2010 , 141, 1146-58	56.2	816
98	Cystatin C rescues degenerating neurons in a cystatin B-knockout mouse model of progressive myoclonus epilepsy. <i>American Journal of Pathology</i> , 2010 , 177, 2256-67	5.8	41
97	Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. <i>Journal of Neuroscience</i> , 2010 , 30, 14946-54	6.6	214
96	Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. <i>Journal of Alzheimerrs Disease</i> , 2010 , 22, 631-9	4.3	92
95	Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. <i>PLoS ONE</i> , 2010 , 5, e9819	3.7	84
94	Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. <i>Methods in Enzymology</i> , 2009 , 453, 111-44	1.7	23

93	Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. Journal of Neuroscience, 2009 , 29, 11316-29	6.6	81
92	Age-dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model. <i>Journal of Neurochemistry</i> , 2009 , 110, 1818-27	6	58
91	In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. <i>Neurobiology of Aging</i> , 2009 , 30, 1453-65	5.6	39
90	Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. <i>Journal of Neuroscience</i> , 2008 , 28, 6926-37	6.6	837
89	Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. <i>American Journal of Pathology</i> , 2008 , 173, 370-84	5.8	135
88	Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. <i>American Journal of Pathology</i> , 2008 , 173, 665-81	5.8	126
87	Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. <i>Journal of Neuroscience</i> , 2008 , 28, 12241-54	6.6	86
86	Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. <i>Journal of Neuroscience</i> , 2008 , 28, 1682-7	6.6	137
85	Neurodegenerative lysosomal disorders: a continuum from development to late age. <i>Autophagy</i> , 2008 , 4, 590-9	10.2	280
84	Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. <i>Journal of Clinical Investigation</i> , 2008 , 118, 2796-807	15.9	160
83	Autophagy, amyloidogenesis and Alzheimer disease. <i>Journal of Cell Science</i> , 2007 , 120, 4081-91	5.3	549
82	Neuronal Protein Trafficking in Alzheimer's Disease and Niemann-Pick Type C Disease 2007 , 391-411		2
81	Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. <i>Journal of Neuroscience</i> , 2006 , 26, 10006-19	6.6	160
80	Neuronal macroautophagy: from development to degeneration. <i>Molecular Aspects of Medicine</i> , 2006 , 27, 503-19	16.7	138
79	Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. <i>Neuroscience Letters</i> , 2006 , 393, 264-8	3.3	41
78	Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. <i>Neuron</i> , 2006 , 51, 29-42	13.9	421
77	Autophagy in neurodegenerative disease: friend, foe or turncoat?. <i>Trends in Neurosciences</i> , 2006 , 29, 528-35	13.3	286
76	Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. <i>Journal of Alzheimens Disease</i> , 2006 , 9, 277-89	4.3	186

(2003-2006)

75	A P rotease Activation Cascadelln the Pathogenesis of Alzheimer's Disease. <i>Annals of the New York Academy of Sciences</i> , 2006 , 924, 117-131	6.5	68
74	Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Journal of Neuropathology and Experimental Neurology, 2005 , 64, 113-22	3.1	1041
73	Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. <i>Neurobiology of Aging</i> , 2005 , 26, 373-82	5.6	308
72	Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. <i>Ageing Research Reviews</i> , 2005 , 4, 315-38	12	28
71	Macroautophagya novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. <i>Journal of Cell Biology</i> , 2005 , 171, 87-98	7.3	791
70	Tissue processing prior to protein analysis and amyloid-beta quantitation. <i>Methods in Molecular Biology</i> , 2005 , 299, 267-78	1.4	39
69	ELISA method for measurement of amyloid-beta levels. <i>Methods in Molecular Biology</i> , 2005 , 299, 279-97	1.4	59
68	Autophagy and its possible roles in nervous system diseases, damage and repair. <i>Autophagy</i> , 2005 , 1, 11-22	10.2	383
67	Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. <i>Journal of Neuropathology and Experimental Neurology</i> , 2004 , 63, 418-28	3.1	79
66	Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. <i>International Journal of Biochemistry and Cell Biology</i> , 2004 , 36, 2531-40	5.6	250
65	Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. <i>Neurobiology of Aging</i> , 2004 , 25, 1263-72	5.6	281
64	Niemann-Pick Type C disease and Alzheimer's disease: the APP-endosome connection fattens up. American Journal of Pathology, 2004 , 164, 757-61	5.8	118
63	Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease. <i>American Journal of Pathology</i> , 2004 , 165, 795-805	5.8	112
62	Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. <i>Journal of Neuropathology and Experimental Neurology</i> , 2004 , 63, 821-30	3.1	113
61	Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. <i>Journal of Biological Chemistry</i> , 2003 , 278, 31261-8	5.4	174
60	Neurofilament transport in vivo minimally requires hetero-oligomer formation. <i>Journal of Neuroscience</i> , 2003 , 23, 9452-8	6.6	48
59	App gene dosage modulates endosomal abnormalities of Alzheimer's disease in a segmental trisomy 16 mouse model of down syndrome. <i>Journal of Neuroscience</i> , 2003 , 23, 6788-92	6.6	181
58	Calpain inhibitors, a treatment for Alzheimer's disease: position paper. <i>Journal of Molecular Neuroscience</i> , 2003 , 20, 357-62	3.3	52

57	Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. <i>Neurochemical Research</i> , 2003 , 28, 1041-7	4.6	56
56	The calpains in aging and aging-related diseases. <i>Ageing Research Reviews</i> , 2003 , 2, 407-18	12	165
55	The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. <i>Journal of Cell Biology</i> , 2003 , 163, 1021-31	7.3	98
54	Calpain inhibitors: a treatment for Alzheimer's disease. Journal of Molecular Neuroscience, 2002, 19, 135	5 -4. 3	47
53	Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2. <i>Acta Neuropathologica</i> , 2002 , 104, 92-10	44.3	78
52	Alzheimer's disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Abeta secretion: role for altered lysosomal hydrolase distribution in beta-amyloidogenesis. <i>Journal of Biological Chemistry</i> , 2002 , 277, 5299-307	5.4	79
51	Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. <i>Journal of Cell Biology</i> , 2002 , 159, 279-90	7.3	101
50	Calpain activity regulates the cell surface distribution of amyloid precursor protein. Inhibition of calpains enhances endosomal generation of beta-cleaved C-terminal APP fragments. <i>Journal of Biological Chemistry</i> , 2002 , 277, 36415-24	5.4	91
49	Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. <i>Journal of Cell Biology</i> , 2002 , 158, 681-93	7.3	116
48	P301L tauopathy: confocal immunofluorescence study of perinuclear aggregation of the mutated protein. <i>Journal of the Neurological Sciences</i> , 2002 , 200, 85-93	3.2	20
47	The neuronal endosomal-lysosomal system in Alzheimer's disease. <i>Journal of Alzheimers Disease</i> , 2001 , 3, 97-107	4.3	107
46	Endocytic disturbances distinguish among subtypes of alzheimer's disease and related disorders. Annals of Neurology, 2001 , 50, 661-665	9.4	67
45	A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. <i>Nature</i> , 2000 , 408, 979-82	50.4	1308
44	The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. <i>Neurochemical Research</i> , 2000 , 25, 1161-72	4.6	251
43	Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation. <i>Journal of Cell Biology</i> , 2000 , 151, 1013-24	7.3	139
42	Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. <i>American Journal of Pathology</i> , 2000 , 157, 277-86	5.8	603
41	A "protease activation cascade" in the pathogenesis of Alzheimer's disease. <i>Annals of the New York Academy of Sciences</i> , 2000 , 924, 117-31	6.5	28
40	The slow axonal transport debate. <i>Trends in Cell Biology</i> , 1998 , 8, 100	18.3	16

39	Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. <i>BioEssays</i> , 1998 , 20, 798-807	4.1	55
38	Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. <i>Molecular Brain Research</i> , 1998 , 54, 35-48		64
37	Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections. <i>Brain Research Protocols</i> , 1998 , 2, 109-19		28
36	Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. <i>Archives of Biochemistry and Biophysics</i> , 1998 , 356, 187-96	4.1	224
35	Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. <i>Journal of Neuroscience Research</i> , 1997 , 48, 515-523	4.4	34
34	Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. <i>Journal of Neurochemistry</i> , 1997 , 69, 2432-40	6	68
33	Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. <i>Journal of Neuroscience</i> , 1997 , 17, 6142-51	6.6	320
32	Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: involvement of calpain-mediated hydrolysis of protein kinase C. <i>Journal of Neurochemistry</i> , 1996 , 66, 1539-49	6	50
31	Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. <i>Journal of Neuroscience</i> , 1996 , 16, 5095-105	6.6	221
30	Colocalization of lysosomal hydrolase and beta-amyloid in diffuse plaques of the cerebellum and striatum in Alzheimer's disease and Down's syndrome. <i>Journal of Neuropathology and Experimental Neurology</i> , 1996 , 55, 704-15	3.1	59
29	Purification and properties of high molecular weight calpastatin from bovine brain. <i>Journal of Neurochemistry</i> , 1995 , 64, 859-66	6	16
28	Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. <i>Journal of Neurochemistry</i> , 1995 , 65, 517-27	6	39
27	Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. <i>Neuron</i> , 1995 , 14, 671-80	13.9	309
26	The endosomal-lysosomal system of neurons: new roles. <i>Trends in Neurosciences</i> , 1995 , 18, 489-96	13.3	124
25	Proteolysis of protein kinase C: mM and microM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. <i>FEBS Letters</i> , 1995 , 367, 223-7	3.8	60
24	Degenerative changes in epinephrine tonic vasomotor neurons in Alzheimer's disease. <i>Brain Research</i> , 1994 , 661, 35-42	3.7	39
23	Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. <i>Brain Research</i> , 1994 , 640, 68-80	3.7	176
22	The lysosomal system in neuronal cell death: a review. <i>Annals of the New York Academy of Sciences</i> , 1993 , 679, 87-109	6.5	75

21	The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology. <i>Brain Pathology</i> , 1993 , 3, 29-38	6	150
20	Differential expression and subcellular localization of protein kinase C alpha, beta, gamma, delta, and epsilon isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation. <i>Journal of Neurochemistry</i> , 1993 , 60, 289-98	6	74
19	Specificity of calcium-activated neutral proteinase (CANP) inhibitors for human mu CANP and mCANP. <i>Neurochemical Research</i> , 1993 , 18, 231-3	4.6	23
18	Aluminum alters the electrophoretic properties of neurofilament proteins: role of phosphorylation state. <i>Journal of Neurochemistry</i> , 1992 , 58, 542-7	6	42
17	Distinct mechanisms of differentiation of SH-SY5Y neuroblastoma cells by protein kinase C activators and inhibitors. <i>Journal of Neurochemistry</i> , 1992 , 58, 1191-8	6	52
16	Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain. <i>Journal of Neurochemistry</i> , 1992 , 58, 1526-32	6	23
15	Dynamics of neuronal intermediate filaments: a developmental perspective. Cytoskeleton, 1992, 22, 81	-91	187
14	Multiple proteases regulate neurite outgrowth in NB2a/dl neuroblastoma cells. <i>Journal of Neurochemistry</i> , 1991 , 56, 842-51	6	46
13	Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. <i>Journal of Neurochemistry</i> , 1990 , 55, 1784-92	6	57
12	Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. <i>Journal of Neurochemistry</i> , 1990 , 55, 1950-9	6	70
11	Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. <i>Molecular Brain Research</i> , 1989 , 5, 93-108		70
10	Calcium-activated neutral proteinases as regulators of cellular function. Implications for Alzheimer's disease pathogenesis. <i>Annals of the New York Academy of Sciences</i> , 1989 , 568, 198-208	6.5	66
9	Phosphorylation of neurofilament proteins by protein kinase C. FEBS Letters, 1988, 233, 181-5	3.8	57
8	Differential distribution of vimentin and neurofilament protein immunoreactivity in NB2a/d1 neuroblastoma cells following neurite retraction distinguishes two separate intermediate filament systems. <i>Developmental Brain Research</i> , 1988 , 469, 298-302		16
7	Calcium-activated neutral proteinase of human brain: subunit structure and enzymatic properties of multiple molecular forms. <i>Journal of Neurochemistry</i> , 1986 , 47, 1039-51	6	46
6	Degradation of neurofilament proteins by purified human brain cathepsin D. <i>Journal of Neurochemistry</i> , 1984 , 43, 507-16	6	80
5	Proteases of human brain. Neurochemical Research, 1984, 9, 291-323	4.6	35
4	Protease activities in normal and schizophrenic human prefrontal cortex and white matter. <i>Neurochemical Research</i> , 1981 , 6, 1043-52	4.6	9

LIST OF PUBLICATIONS

3	Characterization and comparison of neurofilament proteins from rat and mouse CNS. <i>Journal of Neurochemistry</i> , 1981 , 36, 143-53	6	63
2	In Vivo Perturbation of Lysosomal Function Promotes Neurodegeneration in the PS1M146V/APPK670N,M671L Mouse Model of Alzheimer's Disease Pathology687-695		1
1	Faulty autolysosome acidification in Alzheimer disease mouse models induces autophagic build-up of Alin neurons, yielding senile plaques. <i>Nature Neuroscience</i> ,	25.5	13