Ralph A Nixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8307275/publications.pdf

Version: 2024-02-01

164 papers 36,119 citations

83 h-index 161

179 all docs

179 docs citations

179 times ranked 37981 citing authors

g-index

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	The role of autophagy in neurodegenerative disease. Nature Medicine, 2013, 19, 983-997.	30.7	1,642
4	AÎ ² peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature, 2000, 408, 979-982.	27.8	1,472
5	Extensive Involvement of Autophagy in Alzheimer Disease: An Immuno-Electron Microscopy Study. Journal of Neuropathology and Experimental Neurology, 2005, 64, 113-122.	1.7	1,270
6	Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations. Cell, 2010, 141, 1146-1158.	28.9	1,002
7	Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer's Disease. Journal of Neuroscience, 2008, 28, 6926-6937.	3.6	979
8	Macroautophagyâ€"a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. Journal of Cell Biology, 2005, 171, 87-98.	5.2	891
9	Alzheimer disease. Nature Reviews Disease Primers, 2021, 7, 33.	30.5	784
10	Endocytic Pathway Abnormalities Precede Amyloid β Deposition in Sporadic Alzheimer's Disease and Down Syndrome. American Journal of Pathology, 2000, 157, 277-286.	3.8	737
11	Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 2007, 120, 4081-4091.	2.0	631
12	Autophagy failure in Alzheimer's diseaseâ€"locating the primary defect. Neurobiology of Disease, 2011, 43, 38-45.	4.4	560
13	Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF Transport and Causes Cholinergic Neuron Degeneration. Neuron, 2006, 51, 29-42.	8.1	488
14	Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2017, 9, a018309.	5.5	451
15	Autophagy and Its Possible Roles in Nervous System Diseases, Damage and Repair. Autophagy, 2005, 1, 11-22.	9.1	422
16	Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain, 2011, 134, 258-277.	7.6	394
17	Lysosomal Proteolysis Inhibition Selectively Disrupts Axonal Transport of Degradative Organelles and Causes an Alzheimer's-Like Axonal Dystrophy. Journal of Neuroscience, 2011, 31, 7817-7830.	3.6	381
18	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	46.4	370

#	Article	IF	CITATIONS
19	Increased Neuronal Endocytosis and Protease Delivery to Early Endosomes in Sporadic Alzheimer's Disease: Neuropathologic Evidence for a Mechanism of Increased β-Amyloidogenesis. Journal of Neuroscience, 1997, 17, 6142-6151.	3.6	367
20	Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiology of Aging, 2005, 26, 373-382.	3.1	355
21	Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Research Reviews, 2016, 32, 75-88.	10.9	355
22	Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: Evidence for early up-regulation of the endosomal-lysosomal system. Neuron, 1995, 14, 671-680.	8.1	341
23	$\hat{A^2}$ localization in abnormal endosomes: association with earliest $\hat{A^2}$ elevations in AD and Down syndrome. Neurobiology of Aging, 2004, 25, 1263-1272.	3.1	338
24	Neurodegenerative lysosomal disorders: A continuum from development to late age. Autophagy, 2008, 4, 590-599.	9.1	322
25	Autophagy failure in <scp>A</scp> lzheimer's disease and the role of defective lysosomal acidification. European Journal of Neuroscience, 2013, 37, 1949-1961.	2.6	306
26	The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochemical Research, 2000, 25, 1161-1172.	3.3	304
27	Neurofilaments at a glance. Journal of Cell Science, 2012, 125, 3257-3263.	2.0	304
28	Autophagy in neurodegenerative disease: friend, foe or turncoat?. Trends in Neurosciences, 2006, 29, 528-535.	8.6	303
29	Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2004, 36, 2531-2540.	2.8	279
30	Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Reports, 2015, 12, 1430-1444.	6.4	272
31	Alzheimer's-related endosome dysfunction in Down syndrome is Aβ-independent but requires APP and is reversed by BACE-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1630-1635.	7.1	256
32	Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nature Neuroscience, 2022, 25, 688-701.	14.8	254
33	Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy, 2016, 12, 2467-2483.	9.1	252
34	Amyloid precursor protein and endosomalâ€lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB Journal, 2017, 31, 2729-2743.	0.5	249
35	Amyloid-Independent Mechanisms in Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2010, 30, 14946-14954.	3.6	244
36	Caspase-Mediated Fragmentation of Calpain Inhibitor Protein Calpastatin during Apoptosis. Archives of Biochemistry and Biophysics, 1998, 356, 187-196.	3.0	242

#	Article	IF	CITATIONS
37	Oligodendroglia Regulate the Regional Expansion of Axon Caliber and Local Accumulation of Neurofilaments during Development Independently of Myelin Formation. Journal of Neuroscience, 1996, 16, 5095-5105.	3.6	238
38	Microarray Analysis of Hippocampal CA1 Neurons Implicates Early Endosomal Dysfunction During Alzheimer's Disease Progression. Biological Psychiatry, 2010, 68, 885-893.	1.3	229
39	<i>App</i> Gene Dosage Modulates Endosomal Abnormalities of Alzheimer's Disease in a Segmental Trisomy 16 Mouse Model of Down Syndrome. Journal of Neuroscience, 2003, 23, 6788-6792.	3 . 6	218
40	Down syndrome and Alzheimer's disease: Common pathways, commonÂgoals. Alzheimer's and Dementia, 2015, 11, 700-709.	0.8	218
41	Lysosomal system pathways: Genes to neurodegeneration in Alzheimer's disease. Journal of Alzheimer's Disease, 2006, 9, 277-289.	2.6	211
42	Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 94-105.	4.4	208
43	Dynamics of neuronal intermediate filaments: A developmental perspective. Cytoskeleton, 1992, 22, 81-91.	4.4	207
44	Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Human Molecular Genetics, 2010, 19, 3219-3232.	2.9	203
45	Rab5-stimulated Up-regulation of the Endocytic Pathway Increases Intracellular β-Cleaved Amyloid Precursor Protein Carboxyl-terminal Fragment Levels and Aβ Production. Journal of Biological Chemistry, 2003, 278, 31261-31268.	3.4	199
46	Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Research, 1994, 640, 68-80.	2.2	198
47	\hat{A} -Internexin Is Structurally and Functionally Associated with the Neurofilament Triplet Proteins in the Mature CNS. Journal of Neuroscience, 2006, 26, 10006-10019.	3.6	194
48	Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. Journal of Clinical Investigation, 2008, 118, 2796-2807.	8.2	192
49	The calpains in aging and aging-related diseases. Ageing Research Reviews, 2003, 2, 407-418.	10.9	190
50	Neurofilaments: neurobiological foundations for biomarker applications. Brain, 2020, 143, 1975-1998.	7.6	167
51	Axonal Transport Rates <i>In Vivo</i> Are Unaffected by Tau Deletion or Overexpression in Mice. Journal of Neuroscience, 2008, 28, 1682-1687.	3.6	165
52	Down Syndrome Fibroblast Model of Alzheimer-Related Endosome Pathology. American Journal of Pathology, 2008, 173, 370-384.	3.8	161
53	The Regulation of Neurofilament Protein Dynamics by Phosphorylation: Clues to Neurofibrillary Pathobiology. Brain Pathology, 1993, 3, 29-38.	4.1	155
54	Neuronal Apoptosis and Autophagy Cross Talk in Aging PS/APP Mice, a Model of Alzheimer's Disease. American Journal of Pathology, 2008, 173, 665-681.	3.8	153

#	Article	IF	Citations
55	Neuronal macroautophagy: From development to degeneration. Molecular Aspects of Medicine, 2006, 27, 503-519.	6.4	151
56	The endosomal-lysosomal system of neurons: new roles. Trends in Neurosciences, 1995, 18, 489-496.	8.6	149
57	Autophagy and Neuronal Cell Death in Neurological Disorders. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008839-a008839.	5.5	145
58	Local Control of Neurofilament Accumulation during Radial Growth of Myelinating Axons in Vivo. Journal of Cell Biology, 2000, 151, 1013-1024.	5.2	144
59	Presenilin Mutations in Familial Alzheimer Disease and Transgenic Mouse Models Accelerate Neuronal Lysosomal Pathology. Journal of Neuropathology and Experimental Neurology, 2004, 63, 821-830.	1.7	139
60	The Ubiquitin-Proteasome System and the Autophagic-Lysosomal System in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006361-a006361.	6.2	139
61	Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radical Biology and Medicine, 2018, 114, 40-51.	2.9	128
62	Niemann-Pick Type C Disease and Alzheimer's Disease. American Journal of Pathology, 2004, 164, 757-761.	3.8	127
63	Calpain Mediates Calcium-Induced Activation of the Erk1,2 MAPK Pathway and Cytoskeletal Phosphorylation in Neurons. American Journal of Pathology, 2004, 165, 795-805.	3.8	125
64	Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. Journal of Cell Biology, 2002, 158, 681-693.	5.2	124
65	The neuronal endosomal-lysosomal system in Alzheimer's disease. Journal of Alzheimer's Disease, 2001, 3, 97-107.	2.6	112
66	Amyloid-Î ² Deposition Is Associated with Decreased Hippocampal Glucose Metabolism and Spatial Memory Impairment in APP/PS1 Mice. Journal of Neuropathology and Experimental Neurology, 2004, 63, 418-428.	1.7	111
67	Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 631-639.	2.6	110
68	Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid- \hat{l}^2 secretion via deregulated lysosomal exocytosis. Nature Communications, 2013, 4, 2734.	12.8	109
69	Single-Walled Carbon Nanotubes Alleviate Autophagic/Lysosomal Defects in Primary Glia from a Mouse Model of Alzheimer's Disease. Nano Letters, 2014, 14, 5110-5117.	9.1	109
70	Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-Î ² CTF (C99). Journal of Neuroscience, 2019, 39, 5255-5268.	3.6	109
71	The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. Journal of Cell Biology, 2003, 163, 1021-1031.	5. 2	108
72	Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 102-110.	2.1	107

#	Article	IF	CITATIONS
73	Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. Journal of Cell Biology, 2002, 159, 279-290.	5.2	106
74	Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Frontiers in Neuroscience, 2021, 15, 689938.	2.8	104
75	Induction of Autophagy by Cystatin C: A Mechanism That Protects Murine Primary Cortical Neurons and Neuronal Cell Lines. PLoS ONE, 2010, 5, e9819.	2.5	104
76	Calpain Activity Regulates the Cell Surface Distribution of Amyloid Precursor Protein. Journal of Biological Chemistry, 2002, 277, 36415-36424.	3.4	96
77	Marked Calpastatin (CAST) Depletion in Alzheimer's Disease Accelerates Cytoskeleton Disruption and Neurodegeneration: Neuroprotection by CAST Overexpression. Journal of Neuroscience, 2008, 28, 12241-12254.	3.6	96
78	Peripherin Is a Subunit of Peripheral Nerve Neurofilaments: Implications for Differential Vulnerability of CNS and Peripheral Nervous System Axons. Journal of Neuroscience, 2012, 32, 8501-8508.	3.6	95
79	Neurofilaments Form a Highly Stable Stationary Cytoskeleton after Reaching a Critical Level in Axons. Journal of Neuroscience, 2009, 29, 11316-11329.	3.6	94
80	Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2. Acta Neuropathologica, 2002, 104, 92-104.	7.7	93
81	Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. Brain, 2014, 137, 3300-3318.	7.6	92
82	Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy, 2011, 7, 788-789.	9.1	89
83	Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime. Biochemical Society Transactions, 2013, 41, 1495-1502.	3.4	88
84	A "Protease Activation Cascade―in the Pathogenesis of Alzheimer's Disease. Annals of the New York Academy of Sciences, 2000, 924, 117-131.	3.8	87
85	Specific Calpain Inhibition by Calpastatin Prevents Tauopathy and Neurodegeneration and Restores Normal Lifespan in Tau P301L Mice. Journal of Neuroscience, 2014, 34, 9222-9234.	3.6	87
86	Alzheimer's Disease-related Overexpression of the Cation-dependent Mannose 6-Phosphate Receptor Increases AÎ ² Secretion. Journal of Biological Chemistry, 2002, 277, 5299-5307.	3.4	85
87	Degradation of Neurofilament Proteins by Purified Human Brain Cathepsin D. Journal of Neurochemistry, 1984, 43, 507-516.	3.9	84
88	The Lysosomal System in Neuronal Cell Death: A Review. Annals of the New York Academy of Sciences, 1993, 679, 87-109.	3.8	81
89	Endocytic disturbances distinguish among subtypes of alzheimer's disease and related disorders. Annals of Neurology, 2001, 50, 661-665.	5.3	80
90	Cellular Expression and Proteolytic Processing of Presenilin Proteins Is Developmentally Regulated During Neuronal Differentiation. Journal of Neurochemistry, 1997, 69, 2432-2440.	3.9	79

#	Article	IF	Citations
91	Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. Molecular Brain Research, 1989, 5, 93-108.	2.3	76
92	Ageâ€dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model. Journal of Neurochemistry, 2009, 110, 1818-1827.	3.9	76
93	Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. Autophagy, 2011, 7, 1562-1563.	9.1	75
94	The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140443.	2.3	75
95	Differential Expression and Subcellular Localization of Protein Kinase C?,?,?,?, and? Isoforms in SH-SY5Y Neuroblastoma Cells: Modifications During Differentiation. Journal of Neurochemistry, 1993, 60, 289-298.	3.9	74
96	Aluminum Inhibits Calpain-Mediated Proteolysis and Induces Human Neurofilament Proteins to Form ProteaseResistant High Molecular Weight Complexes. Journal of Neurochemistry, 1990, 55, 1950-1959.	3.9	73
97	Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiology of Aging, 2016, 39, 90-98.	3.1	73
98	mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy. Cell Death and Disease, 2019, 10, 563.	6.3	72
99	Calcium-Activated Neutral Proteinases as Regulators of Cellular Function Implications for Alzheimer's Disease Pathogenesis. Annals of the New York Academy of Sciences, 1989, 568, 198-208.	3.8	69
100	Colocalization of Lysosomal Hydrolase and \hat{l}^2 -Amyloid in Diffuse Plaques of the Cerebellum and Striatum in Alzheimer \hat{E} 1/4s Disease and Down \hat{E} 1/4s Syndrome. Journal of Neuropathology and Experimental Neurology, 1996, 55, 704-715.	1.7	69
101	Phosphorylation of neurofilament proteins by protein kinase C. FEBS Letters, 1988, 233, 181-185.	2.8	66
102	Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. Molecular Brain Research, 1998, 54, 35-48.	2.3	65
103	Characterization and Comparison of Neurofilament Proteins from Rat and Mouse CNS. Journal of Neurochemistry, 1981, 36, 143-153.	3.9	64
104	2014 Report on the Milestones for the US National Plan to Address Alzheimer's Disease., 2014, 10, S430-S452.		64
105	Proteolysis of protein kinase C: mM and μM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Letters, 1995, 367, 223-227.	2.8	63
106	Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. BioEssays, 1998, 20, 798-807.	2.5	63
107	ELISA Method for Measurement of Amyloid-β Levels. , 2005, 299, 279-298.		63
108	Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Research Bulletin, 2016, 126, 334-346.	3.0	63

#	Article	IF	CITATIONS
109	Calpain Inhibitors, a Treatment for Alzheimer's Disease: Position Paper. Journal of Molecular Neuroscience, 2003, 20, 357-362.	2.3	61
110	Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of $\hat{A}^{2}PP$ metabolites in the Tg2576 mouse model of Alzheimer's disease. Experimental Neurology, 2015, 264, 82-91.	4.1	60
111	Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. Neurochemical Research, 2003, 28, 1041-1047.	3.3	59
112	Dynamics of Phosphorylation and Assembly of the High Molecular Weight Neurofilament Subunit in NB2a/d1 Neuroblastoma. Journal of Neurochemistry, 1990, 55, 1784-1792.	3.9	58
113	Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Reports, 2020, 33, 108420.	6.4	58
114	Distinct Mechanisms of Differentiation of SH-SY5Y Neuroblastoma Cells by Protein Kinase C Activators and Inhibitors. Journal of Neurochemistry, 1992, 58, 1191-1198.	3.9	54
115	Calcium Influx into Human Neuroblastoma Cells Induces ALZâ€50 Immunoreactivity: Involvement of Calpainâ€Mediated Hydrolysis of Protein Kinase C. Journal of Neurochemistry, 1996, 66, 1539-1549.	3.9	54
116	Calpain inhibitors. Journal of Molecular Neuroscience, 2002, 19, 135-141.	2.3	53
117	Cystatin C Rescues Degenerating Neurons in a Cystatin B-Knockout Mouse Model of Progressive Myoclonus Epilepsy. American Journal of Pathology, 2010, 177, 2256-2267.	3.8	51
118	Neurofilament Transport (i>In Vivo (i>Minimally Requires Hetero-Oligomer Formation. Journal of Neuroscience, 2003, 23, 9452-9458.	3.6	50
119	Multiple Proteases Regulate Neurite Outgrowth in NB2a/dl Neuroblastoma Cells. Journal of Neurochemistry, 1991, 56, 842-851.	3.9	49
120	Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy <i>in vivo</i> . Autophagy, 2019, 15, 543-557.	9.1	49
121	Calciumâ€Activated Neutral Proteinase of Human Brain: Subunit Structure and Enzymatic Properties of Multiple Molecular Forms. Journal of Neurochemistry, 1986, 47, 1039-1051.	3.9	48
122	In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. Neurobiology of Aging, 2009, 30, 1453-1465.	3.1	48
123	Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Reports, 2021, 35, 109034.	6.4	46
124	Aluminum Alters the Electrophoretic Properties of Neurofilament Proteins: Role of Phosphorylation State. Journal of Neurochemistry, 1992, 58, 542-547.	3.9	43
125	Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. Neuroscience Letters, 2006, 393, 264-268.	2.1	43
126	The Myosin Va Head Domain Binds to the Neurofilament-L Rod and Modulates Endoplasmic Reticulum (ER) Content and Distribution within Axons. PLoS ONE, 2011, 6, e17087.	2.5	43

#	Article	IF	Citations
127	Enhancement of Neurite Outgrowth Following Calpain Inhibition Is Mediated by Protein Kinase C. Journal of Neurochemistry, 1995, 65, 517-527.	3.9	42
128	Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiology of Aging, 2011, 32, 2016-2029.	3.1	42
129	Degenerative changes in epinephrine tonic vasomotor neurons in Alzheimer's disease. Brain Research, 1994, 661, 35-42.	2.2	41
130	Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome. Current Alzheimer Research, 2015, 13, 35-52.	1.4	41
131	Tissue Processing Prior to Protein Analysis and Amyloid- \hat{l}^2 Quantitation. , 2005, 299, 267-278.		40
132	Proteases of human brain. Neurochemical Research, 1984, 9, 291-323.	3.3	39
133	Calpastatin inhibits motor neuron death and increases survival of hSOD1 ^{G93A} mice. Journal of Neurochemistry, 2016, 137, 253-265.	3.9	37
134	Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors. Translational Psychiatry, 2018, 8, 167.	4.8	37
135	Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. Journal of Neuroscience Research, 1997, 48, 515-523.	2.9	35
136	Medical bioremediation: Prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Research Reviews, 2005, 4, 315-338.	10.9	34
137	Immunization targeting a minor plaque constituent clears \hat{l}^2 -amyloid and rescues behavioral deficits in an Alzheimer's disease mouse model. Neurobiology of Aging, 2013, 34, 137-145.	3.1	33
138	Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections. Brain Research Protocols, 1998, 2, 109-119.	1.6	32
139	Rapamycin induces autophagic flux in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E181; author reply E182.	7.1	32
140	The C-Terminal Domains of NF-H and NF-M Subunits Maintain Axonal Neurofilament Content by Blocking Turnover of the Stationary Neurofilament Network. PLoS ONE, 2012, 7, e44320.	2.5	31
141	A "protease activation cascade" in the pathogenesis of Alzheimer's disease. Annals of the New York Academy of Sciences, 2000, 924, 117-31.	3.8	28
142	Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca ²⁺ efflux and disrupted by PSEN1 loss of function. Science Advances, 2022, 8, eabj5716.	10.3	28
143	Chapter 6 Monitoring Autophagy in Alzheimer's Disease and Related Neurodegenerative Diseases. Methods in Enzymology, 2009, 453, 111-144.	1.0	26
144	Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice. Human Molecular Genetics, 2017, 26, ddx001.	2.9	25

#	Article	lF	CITATIONS
145	Immunoassay and Activity of Calcium-Activated Neutral Proteinase (mCANP): Distribution in Soluble and Membrane-Associated Fractions in Human and Mouse Brain. Journal of Neurochemistry, 1992, 58, 1526-1532.	3.9	24
146	Specificity of calcium-activated neutral proteinase (CANP) inhibitors for human ?CANP and mCANP. Neurochemical Research, 1993, 18, 231-233.	3.3	24
147	P301L tauopathy. Journal of the Neurological Sciences, 2002, 200, 85-93.	0.6	24
148	Setback for an Alzheimer's disease vaccine. Neurology, 2003, 61, 7-8.	1.1	23
149	Î ² 2-adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. Journal of Molecular Biology, 2020, 432, 2633-2650.	4.2	23
150	The contributions of myelin and axonal caliber to transverse relaxation time in shiverer and neurofilament-deficient mouse models. NeuroImage, 2010, 51, 1098-1105.	4.2	21
151	The slow axonal transport debate. Trends in Cell Biology, 1998, 8, 100.	7.9	18
152	Purification and Properties of High Molecular Weight Calpastatin from Bovine Brain. Journal of Neurochemistry, 1995, 64, 859-866.	3.9	17
153	Differential distribution of vimentin and neurofilament protein immunoreactivity in NB2a/d1 neuroblastoma cells following neurite retraction distinguishes two separate intermediate filament systems. Developmental Brain Research, 1988, 41, 298-302.	1.7	16
154	Spared Piriform Cortical Single-Unit Odor Processing and Odor Discrimination in the Tg2576 Mouse Model of Alzheimer's Disease. PLoS ONE, 2014, 9, e106431.	2.5	16
155	Mechanisms of Neural and Behavioral Dysfunction in Alzheimer's Disease. Molecular Neurobiology, 2011, 43, 163-179.	4.0	15
156	Alzheimer neurodegeneration, autophagy, and Abeta secretion: The ins and outs (comment on DOI) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
157	Calpastatin modulates APP processing in the brains of \hat{l}^2 -amyloid depositing but not wild-type mice. Neurobiology of Aging, 2012, 33, 1125.e9-1125.e18.	3.1	13
158	Protease activities in normal and schizophrenic human prefrontal cortex and white matter. Neurochemical Research, 1981, 6, 1043-1052.	3.3	9
159	Dissociation of Axonal Neurofilament Content from Its Transport Rate. PLoS ONE, 2015, 10, e0133848.	2.5	9
160	AUTOPHAGY FAILURE IN ALZHEIMER'S DISEASE AND LYSOSOMAL STORAGE DISORDERS: A COMMON PATHWAY TO NEURODEGENERATION?. , 2012, , 237-257.		3
161	New perspectives on lysosomes in ageing and neurodegenerative disease. Ageing Research Reviews, 2016, 32, 1.	10.9	3
162	Assessing Rab5 Activation in Health and Disease. Methods in Molecular Biology, 2021, 2293, 273-294.	0.9	2

#	Article	IF	CITATIONS
163	Neuronal Protein Trafficking in Alzheimer's Disease and Niemann-Pick Type C Disease. , 2007, , 391-411.		2
164	In Vivo Perturbation of Lysosomal Function Promotes Neurodegeneration in the PS1M146V/APPK670N,M671L Mouse Model of Alzheimer's Disease Pathology., 0,, 687-695.		1