Xiao-Hong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8307136/publications.pdf

Version: 2024-02-01

361413 395702 1,609 33 20 33 citations h-index g-index papers 35 35 35 2502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Defective Pollen Wall</i> Is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase Â. Plant Cell, 2011, 23, 2225-2246.	6.6	226
2	<i>Male Sterile2</i> Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis Â. Plant Physiology, 2011, 157, 842-853.	4.8	188
3	A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18855-18860.	7.1	153
4	Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction Â. Plant Cell, 2012, 24, 50-65.	6.6	132
5	Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H ₂ O ₂ to the cosubstrate O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3191-3196.	7.1	109
6	Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Functional and Integrative Genomics, 2014, 14, 603-615.	3.5	101
7	BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Molecular Biology, 2009, 70, 421-442.	3.9	82
8	Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnology Letters, 2003, 25, 1431-1436.	2.2	61
9	Nucleocytoplasmic″ocalized acyltransferases catalyze the malonylation of 7â€∢i>Oâ€∢/i>glycosidic (iso)flavones in ∢i>Medicago truncatula∢/i>. Plant Journal, 2008, 55, 382-396.	5.7	59
10	Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biology, 2011, 11, 97.	3.6	51
11	Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Science, 2006, 171, 699-706.	3.6	48
12	Compositional characterization and imaging of "wall-bound―acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta, 2008, 229, 15-24.	3.2	45
13	Coexpressing <i>Escherichia coli</i> Cyclopropane Synthase with <i>Sterculia foetida</i> Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation Â. Plant Physiology, 2014, 164, 455-465.	4.8	41
14	Structural basis for Ca2+-dependent activation of a plant metacaspase. Nature Communications, 2020, 11, 2249.	12.8	38
15	Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnology Journal, 2018, 16, 926-938.	8.3	32
16	Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants, 2021, 7, 1288-1300.	9.3	30
17	Characterization and Ectopic Expression of a Populus Hydroxyacid Hydroxycinnamoyltransferase. Molecular Plant, 2013, 6, 1889-1903.	8.3	27
18	Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant Journal, 2008, 55, 080414150319983.	5.7	26

#	Article	IF	CITATIONS
19	Conjugated Fatty Acid Synthesis. Journal of Biological Chemistry, 2012, 287, 16230-16237.	3.4	24
20	Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1). Planta, 2012, 236, 781-793.	3.2	23
21	Development of an analytical method for genome-wide functional identification of plant acyl-coenzyme A-dependent acyltransferases. Analytical Biochemistry, 2006, 358, 146-148.	2.4	22
22	Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Metabolomics, 2019, 15, 6.	3.0	21
23	Expression of a Lychee <i>PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE</i> with an <i>Escherichia coli CYCLOPROPANE SYNTHASE</i> Accumulation in Camelina Seeds. Plant Physiology, 2019, 180, 1351-1361.	4.8	14
24	Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. Plant Cell Reports, 2009, 28, 1265-1272.	5.6	12
25	Two clusters of residues contribute to the activity and substrate specificity of Fm1, a bifunctional oleate and linoleate desaturase of fungal origin. Journal of Biological Chemistry, 2018, 293, 19844-19853.	3.4	11
26	A conserved evolutionary mechanism permits \hat{l} desaturation of very-long-chain fatty acyl lipids. Journal of Biological Chemistry, 2020, 295, 11337-11345.	3.4	7
27	Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. Plant Physiology, 2021, 185, 892-901.	4.8	7
28	Solving a furan fatty acid biosynthesis puzzle. Journal of Biological Chemistry, 2020, 295, 9802-9803.	3.4	4
29	A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics, 2021, 22, 513.	2.6	3
30	Regioselectivity mechanism of the <i>Thunbergia alata</i> Δ6-16:0-acyl carrier protein desaturase. Plant Physiology, 2022, 188, 1537-1549.	4.8	3
31	The Inducible Accumulation of Cell Wall-Bound p-Hydroxybenzoates Is Involved in the Regulation of Gravitropic Response of Poplar. Frontiers in Plant Science, 2021, 12, 755576.	3.6	3
32	Final and Fatal Step of Tracheary Element Differentiation. Progress in Biotechnology, 2001, 18, 29-42.	0.2	2
33	A Protease Activity Displaying Some Thrombin-like Characteristics in Conditioned Medium of Zinnia Mesophyll Cells Undergoing Tracheary Element Differentiation. Journal of Plant Growth Regulation, 2004, 23, 292-300.	5.1	2